咨询与建议

限定检索结果

文献类型

  • 100 篇 期刊文献
  • 48 篇 会议
  • 15 篇 资讯
  • 2 篇 学位论文

馆藏范围

  • 165 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 113 篇 工学
    • 86 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 16 篇 生物工程
    • 9 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 9 篇 化学工程与技术
    • 8 篇 软件工程
    • 5 篇 生物医学工程(可授...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 72 篇 理学
    • 67 篇 生物学
    • 12 篇 化学
    • 4 篇 数学
    • 4 篇 物理学
    • 3 篇 统计学(可授理学、...
  • 19 篇 农学
    • 10 篇 作物学
  • 13 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 2 篇 特种医学
    • 1 篇 药学(可授医学、理...
  • 12 篇 管理学
    • 12 篇 管理科学与工程(可...

主题

  • 165 篇 protein secondar...
  • 17 篇 deep learning
  • 17 篇 machine learning
  • 14 篇 neural networks
  • 12 篇 bioinformatics
  • 10 篇 protein structur...
  • 10 篇 multiple sequenc...
  • 8 篇 svm
  • 8 篇 compound pyramid...
  • 8 篇 structure predic...
  • 7 篇 support vector m...
  • 7 篇 feature extracti...
  • 6 篇 pssm
  • 6 篇 protein structur...
  • 6 篇 homology modelin...
  • 6 篇 convolutional ne...
  • 5 篇 molecular modeli...
  • 5 篇 support vector m...
  • 5 篇 pcr
  • 5 篇 convolutional ne...

机构

  • 4 篇 univ sci & techn...
  • 4 篇 qilu univ techno...
  • 3 篇 univ cyprus dept...
  • 2 篇 visvesvaraya nat...
  • 2 篇 univ gadjah mada...
  • 2 篇 univ estadual ca...
  • 2 篇 georgia state un...
  • 2 篇 yunnan univ sch ...
  • 2 篇 qilu univ techno...
  • 2 篇 univ cyprus dept...
  • 2 篇 shri ramdeobaba ...
  • 2 篇 de montfort univ...
  • 2 篇 univ oviedo dept...
  • 2 篇 univ sci & techn...
  • 2 篇 univ cyprus dept...
  • 2 篇 institute of int...
  • 2 篇 biocomputing res...
  • 2 篇 iowa state univ ...
  • 2 篇 univ cyprus dept...
  • 1 篇 max planck inst ...

作者

  • 8 篇 yang bingru
  • 7 篇 liu yihui
  • 6 篇 agathocleous mic...
  • 6 篇 ma yuming
  • 6 篇 christodoulou ch...
  • 4 篇 promponas vasili...
  • 3 篇 jin xin
  • 3 篇 cheng jinyong
  • 3 篇 hou wei
  • 3 篇 yao shaowen
  • 3 篇 jiang qian
  • 3 篇 vassiliades vass...
  • 3 篇 yang wei
  • 3 篇 pedrini helio
  • 3 篇 aydin zafer
  • 3 篇 de oliveira gabr...
  • 3 篇 qu wu
  • 3 篇 zhou zhun
  • 3 篇 dias zanoni
  • 2 篇 hassan rohayanti

语言

  • 146 篇 英文
  • 17 篇 其他
  • 2 篇 中文
检索条件"主题词=Protein secondary structure Prediction"
165 条 记 录,以下是51-60 订阅
排序:
SALIENCY MAP ON CNNS FOR protein secondary structure prediction  44
SALIENCY MAP ON CNNS FOR PROTEIN SECONDARY STRUCTURE PREDICT...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Moreno, Guillermo Romero Niranjan, Mahesan Prugel-Bennett, Adam Univ Southampton Sch Elect & Comp Sci Southampton Hants England
Deep learning, a powerful methodology for data-driven modelling, has been shown to be useful in tackling several problems in the biomedical domain. However, deep neural architectures lack interpretability of how predi... 详细信息
来源: 评论
Application of the Multi-modal Relevance Vector Machine to the Problem of protein secondary structure prediction
Application of the Multi-modal Relevance Vector Machine to t...
收藏 引用
7th International-Association-for-Pattern-Recognition (IAPR) International Conference on Pattern Recognition in Bioinformatics (PRIB)
作者: Razin, Nikolay Sungurov, Dmitry Mottl, Vadim Torshin, Ivan Sulimova, Valentina Seredin, Oleg Windridge, David Moscow Inst Phys & Technol Moscow Russia Russian Acad Sci Ctr Comp Moscow Russia Tula State Univ Tula Russia Univ Surrey Guildford Surrey England
The aim of the paper is to experimentally examine the plausibility of Relevance Vector Machines (RVM) for protein secondary structure prediction. We restrict our attention to detecting strands which represent an espec... 详细信息
来源: 评论
A Novel Group Template Pattern Classifiers (GTPCs) Method in protein secondary structure prediction  3
A Novel Group Template Pattern Classifiers (GTPCs) Method in...
收藏 引用
3rd IEEE International Conference on Computer and Communications (ICCC)
作者: Liu, Yihui Ma, Yuming Cheng, Jinyong Qilu Univ Technol Inst Intelligent Informat Proc Jinan Shandong Peoples R China
protein secondary structure prediction is a fundamental problem and is much more challenging. In this study we propose a novel method called Group Template Pattern Classifiers (GTPCs), which captures the long-range in... 详细信息
来源: 评论
MMEC: Multi-Modal Ensemble Classifier for protein secondary structure prediction  19th
MMEC: Multi-Modal Ensemble Classifier for Protein Secondary ...
收藏 引用
19th International Conference on Computer Analysis of Images and Patterns (CAIP)
作者: de Oliveira, Gabriel Bianchin Pedrini, Helio Dias, Zanoni Univ Estadual Campinas Inst Comp Campinas SP Brazil
The protein secondary structure prediction is an important task with many applications, such as local folding analysis, tertiary structure prediction, and function classification. Driven by the recent success of multi... 详细信息
来源: 评论
Hybrid SVM kernels for protein secondary structure prediction
Hybrid SVM kernels for protein secondary structure predictio...
收藏 引用
IEEE International Conference on Granular Computing
作者: Altun, Gulsah Hu, Hae-Jin Brinza, Dumitru Harrison, Robert W. Zelikovsky, Alex Pan, Yi
The Support Vector Machine is a powerful methodology for solving problems in nonlinear classification, function estimation and density estimation. When data are not linearly separable, data are mapped to a high dimens... 详细信息
来源: 评论
Ensemble of Bidirectional Recurrent Networks and Random Forests for protein secondary structure prediction  27
Ensemble of Bidirectional Recurrent Networks and Random Fore...
收藏 引用
27th International Conference on Systems, Signals and Image Processing (IWSSIP)
作者: de Oliveira, Gabriel Bianchin Pedrini, Helio Dias, Zanoni Univ Estadual Campinas Inst Comp BR-13083852 Campinas SP Brazil
The prediction of secondary protein structures is one of the classic problems of bioinformatics and has several practical applications. In this work, we present an ensemble of bidirectional recurrent networks (capable... 详细信息
来源: 评论
The Relative Importance of Input Encoding and Learning Methodology on protein secondary structure prediction
The Relative Importance of Input Encoding and Learning Metho...
收藏 引用
作者: Arnshea Clayton Georgia State University
学位级别:硕士
In this thesis the relative importance of input encoding and learning algorithm on protein secondary structure prediction is explored. A novel input encoding, based on multidimensional scaling applied to a recently pu... 详细信息
来源: 评论
Lightweight proteinUnet2 network for protein secondary structure prediction: a step towards proper evaluation
收藏 引用
BMC BIOINFORMATICS 2022年 第1期23卷 100-100页
作者: Stapor, Katarzyna Kotowski, Krzysztof Smolarczyk, Tomasz Roterman, Irena Silesian Tech Univ Dept Appl Informat Akad 16 PL-44100 Gliwice Poland Jagiellonian Univ Med Coll Dept Bioinformat & Telemed Med 7 PL-30688 Krakow Poland
Background The prediction of protein secondary structures is a crucial and significant step for ab initio tertiary structure prediction which delivers the information about proteins activity and functions. As the expe... 详细信息
来源: 评论
Self-attention and asymmetric multi-layer perceptron-gated recurrent unit blocks for protein secondary structure prediction
收藏 引用
APPLIED SOFT COMPUTING 2024年 159卷
作者: Ismi, Dewi Pramudi Pulungan, Reza Afiahayati Univ Gadjah Mada Fac Math & Nat Sci Dept Comp Sci & Elect Yogyakarta Indonesia Univ Ahmad Dahlan Fac Ind Technol Dept Informat Yogyakarta Indonesia
protein secondary structure prediction (PSSP) is one of the most prominent and widely -conducted tasks in Bioinformatics. Deep neural networks have become the primary methods for building PSSP models in the last decad... 详细信息
来源: 评论
Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory
收藏 引用
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY 2023年 11卷 1051268页
作者: Yuan, Lu Ma, Yuming Liu, Yihui Qilu Univ Technol Shandong Acad Sci Sch Comp Sci & Technol Jinan Peoples R China
protein secondary structure prediction (PSSP) is a challenging task in computational biology. However, existing models with deep architectures are not sufficient and comprehensive for deep long-range feature extractio... 详细信息
来源: 评论