Analysis of large volumes of data is very complex due to not only a high level of skewness and heteroscedasticity of variance but also the phenomenon of missing data. Expectile regression is a popular alternative meth...
详细信息
Analysis of large volumes of data is very complex due to not only a high level of skewness and heteroscedasticity of variance but also the phenomenon of missing data. Expectile regression is a popular alternative method of analyzing heterogeneous data. In this paper, we consider fitting a linear expectile regression model for estimating conditional expectiles based on a large quantity of data with covariates missing at random. We construct a communication-efficient surrogate loss (CSL) function to estimate model parameters. The asymptotic normality of the proposed estimator is established. A proximal alternating direction method of multipliers (admm) algorithm is developed for distributed statistical optimization on a large quantity of data. Simulation studies are performed to assess the finite-sample performance of the proposed method. Survey data from the Behavioral Risk Factor Surveillance System (BRFSS) is used to demonstrate the utility of the proposed method in practice.
In this paper we propose a primal-dual dynamical approach to the minimization of a structured convex function consisting of a smooth term, a nonsmooth term, and the composition of another nonsmooth term with a linear ...
详细信息
In this paper we propose a primal-dual dynamical approach to the minimization of a structured convex function consisting of a smooth term, a nonsmooth term, and the composition of another nonsmooth term with a linear continuous operator. In this scope we introduce a dynamical system for which we prove that its trajectories asymptotically converge to a saddle point of the Lagrangian of the underlying convex minimization problem as time tends to infinity. In addition, we provide rates for both the violation of the feasibility condition by the ergodic trajectories and the convergence of the objective function along these ergodic trajectories to its minimal value. Explicit time discretization of the dynamical system results in a numerical algorithm which is a combination of the linearized proximal method of multipliers and the proximal admm algorithm. (C) 2020 Elsevier Inc. All rights reserved.
暂无评论