咨询与建议

限定检索结果

文献类型

  • 100 篇 期刊文献
  • 23 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 75 篇 工学
    • 40 篇 电气工程
    • 33 篇 计算机科学与技术...
    • 15 篇 信息与通信工程
    • 15 篇 软件工程
    • 11 篇 控制科学与工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 74 篇 理学
    • 61 篇 数学
    • 9 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 2 篇 生物学
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 25 篇 管理学
    • 25 篇 管理科学与工程(可...
  • 9 篇 医学
    • 7 篇 临床医学
    • 3 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 2 篇 农学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 124 篇 proximal algorit...
  • 9 篇 convex optimizat...
  • 7 篇 optimization
  • 6 篇 distributed opti...
  • 6 篇 convergence
  • 6 篇 sparsity
  • 5 篇 nonconvex regula...
  • 4 篇 splitting algori...
  • 4 篇 denoising
  • 4 篇 nonconvex optimi...
  • 3 篇 sparse regulariz...
  • 3 篇 nonsmooth optimi...
  • 3 篇 convex minimizat...
  • 3 篇 image restoratio...
  • 3 篇 stochastic appro...
  • 3 篇 couplings
  • 3 篇 constrained opti...
  • 3 篇 matrix completio...
  • 3 篇 minimization
  • 3 篇 regularization

机构

  • 5 篇 north carolina s...
  • 2 篇 univ montpellier...
  • 2 篇 observ paris cnr...
  • 2 篇 politecn milan d...
  • 2 篇 inria f-38334 sa...
  • 2 篇 department of co...
  • 2 篇 shanghaitech uni...
  • 2 篇 hong kong univ s...
  • 2 篇 univ grenoble al...
  • 2 篇 tsinghua univ de...
  • 2 篇 hong kong baptis...
  • 1 篇 univ paris sacla...
  • 1 篇 school of comput...
  • 1 篇 dalian univ tech...
  • 1 篇 univ mohammed 5 ...
  • 1 篇 beijing univ che...
  • 1 篇 upmc universite ...
  • 1 篇 department of co...
  • 1 篇 cncpst f-75252 p...
  • 1 篇 univ zanjan dept...

作者

  • 9 篇 combettes patric...
  • 6 篇 pesquet jean-chr...
  • 3 篇 kwok james t.
  • 3 篇 chouzenoux emili...
  • 3 篇 yao quanming
  • 2 篇 pesquet j. -c.
  • 2 篇 lemaréchal c
  • 2 篇 bertsekas dimitr...
  • 2 篇 cong fengyu
  • 2 篇 prandini maria
  • 2 篇 pustelnik n.
  • 2 篇 jin danqi
  • 2 篇 lu jie
  • 2 篇 falsone alessand...
  • 2 篇 wu xuyang
  • 2 篇 chaux caroline
  • 2 篇 malick jerome
  • 2 篇 bougeard ml
  • 2 篇 corbineau marie-...
  • 2 篇 cabot a.

语言

  • 119 篇 英文
  • 5 篇 其他
检索条件"主题词=Proximal Algorithm"
124 条 记 录,以下是1-10 订阅
排序:
An accelerated proximal algorithm for regularized nonconvex and nonsmooth bi-level optimization
收藏 引用
MACHINE LEARNING 2023年 第5期112卷 1433-1463页
作者: Chen, Ziyi Kailkhura, Bhavya Zhou, Yi Univ Utah Elect & Comp Dept 50 Cent Campus Dr 2110 Salt Lake City UT 84112 USA Lawrence Livermore Natl Lab 7000 East Ave Livermore CA 10587 USA
Many important machine learning applications involve regularized nonconvex bi-level optimization. However, the existing gradient-based bi-level optimization algorithms cannot handle nonconvex or nonsmooth regularizers... 详细信息
来源: 评论
A proximal algorithm with backtracked extrapolation for a class of structured fractional programming
收藏 引用
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS 2022年 56卷 98-122页
作者: Li, Qia Shen, Lixin Zhang, Na Zhou, Junpeng Sun Yat Sen Univ Sch Comp Sci & Engn Guangdong Prov Key Lab Computat Sci Guangzhou 510275 Peoples R China Syracuse Univ Dept Math Syracuse NY 13244 USA South China Agr Univ Coll Math & Informat Dept Appl Math Guangzhou 510642 Peoples R China Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510275 Peoples R China
In this paper, we consider a class of structured fractional minimization problems where the numerator part of the objective is the sum of a convex function and a Lipschitz differentiable (possibly) nonconvex function,... 详细信息
来源: 评论
Improved dimension dependence of a proximal algorithm for sampling  36
Improved dimension dependence of a proximal algorithm for sa...
收藏 引用
36th Annual Conference on Learning Theory (COLT)
作者: Fan, Jiaojiao Yuan, Bo Chen, Yongxin Georgia Inst Technol Atlanta GA 30332 USA
We propose a sampling algorithm that achieves superior complexity bounds in all the classical settings (strongly log-concave, log-concave, Logarithmic-Sobolev inequality (LSI), Poincare inequality) as well as more gen... 详细信息
来源: 评论
A Second-Order proximal algorithm for Consensus Optimization
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2021年 第4期66卷 1864-1871页
作者: Wu, Xuyang Qu, Zhihai Lu, Jie ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China
We develop a distributed second-order proximal algorithm, referred to as SoPro, to address in-network consensus optimization. The proposed SoPro algorithm converges linearly to the exact optimal solution, provided tha... 详细信息
来源: 评论
Sparse nonnegative tensor decomposition using proximal algorithm and inexact block coordinate descent scheme
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2021年 第24期33卷 17369-17387页
作者: Wang, Deqing Chang, Zheng Cong, Fengyu Dalian Univ Technol Fac Elect Informat & Elect Engn Sch Biomed Engn Dalian 116024 Peoples R China Univ Jyvaskyla Fac Informat Technol Jyvaskyla 40100 Finland Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Dalian Univ Technol Fac Elect Informat & Elect Engn Sch Artificial Intelligence Dalian 116024 Peoples R China Dalian Univ Technol Key Lab Integrated Circuit & Biomed Elect Syst Dalian 116024 Peoples R China
Nonnegative tensor decomposition is a versatile tool for multiway data analysis, by which the extracted components are nonnegative and usually sparse. Nevertheless, the sparsity is only a side effect and cannot be exp... 详细信息
来源: 评论
Dual Consensus proximal algorithm for Multi-Agent Sharing Problems
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2021年 69卷 5568-5579页
作者: Alghunaim, Sulaiman A. Lyu, Qi Yan, Ming Sayed, Ali H. Kuwait Univ Dept Elect Engn Kuwait 13060 Kuwait Michigan State Univ MSU Dept Computat Math Sci & Engn E Lansing MI 48824 USA Michigan State Univ MSU Dept ofMathemat E Lansing MI 48824 USA Ecole Polytech Fed Lausanne Sch Engn CH-1015 Lausanne Switzerland
This work considers multi-agent sharing optimization problems, where each agent owns a local smooth function plus a non-smooth function, and the network seeks to minimize the sum of all local functions plus a coupling... 详细信息
来源: 评论
A proximal distance algorithm for likelihood-based sparse covariance estimation
收藏 引用
BIOMETRIKA 2022年 第4期109卷 1047-1066页
作者: Xu, Jason Lange, Kenneth Duke Univ Dept Stat Sci Box 90251 Durham NC 27708 USA Univ Calif Los Angeles Dept Computat Med Box 708822 Los Angeles CA 90095 USA
This paper addresses the task of estimating a covariance matrix under a patternless sparsity assumption. In contrast to existing approaches based on thresholding or shrinkage penalties, we propose a likelihood-based m... 详细信息
来源: 评论
ProMeSCT: A proximal Metric algorithm for Spectral CT
收藏 引用
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021年 第4期5卷 548-558页
作者: Tairi, Souhil Anthoine, Sandrine Boursier, Yannick Dupont, Mathieu Morel, Christian Aix Marseille Univ CNRS IN2P3 CPPM F-13009 Marseille France Aix Marseille Univ CNRS Cent Marseille 12M F-13009 Marseille France
The acquisition of a set of spectral photon-counting computed tomography (spectral PC-CT) measurements aims at uncovering both the spatial and energetic characteristics of the imaged body, which widens the potential o... 详细信息
来源: 评论
HIGHER-ORDER NONNEGATIVE CANDECOMP/PARAFAC TENSOR DECOMPOSITION USING proximal algorithm  44
HIGHER-ORDER NONNEGATIVE CANDECOMP/PARAFAC TENSOR DECOMPOSIT...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Wang, Deqing Cong, Fengyu Ristaniemi, Tapani Dalian Univ Technol Sch Biomed Engn Fac Elect Informat & Elect Engn Dalian Peoples R China Univ Jyvaskyla Fac Informat Technol Jyvaskyla Finland
Tensor decomposition is a powerful tool for analyzing multiway data. Nowadays, with the fast development of multisensor technology, more and more data appear in higher-order (order >= 4) and nonnegative form. Howev... 详细信息
来源: 评论
A proximal MINIMIZATION algorithm FOR STRUCTURED NONCONVEX AND NONSMOOTH PROBLEMS
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2019年 第2期29卷 1300-1328页
作者: Bot, Radu Ioan Csetnek, Erno Robert Dang-Khoa Nguyen Univ Vienna Fac Math Oskar Morgenstern Pl 1 A-1090 Vienna Austria
We propose a proximal algorithm for minimizing objective functions consisting of three summands: the composition of a nonsmooth function with a linear operator, another nonsmooth function (with each of the nonsmooth s... 详细信息
来源: 评论