咨询与建议

限定检索结果

文献类型

  • 100 篇 期刊文献
  • 23 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 75 篇 工学
    • 40 篇 电气工程
    • 33 篇 计算机科学与技术...
    • 15 篇 信息与通信工程
    • 15 篇 软件工程
    • 11 篇 控制科学与工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 74 篇 理学
    • 61 篇 数学
    • 9 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 2 篇 生物学
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 25 篇 管理学
    • 25 篇 管理科学与工程(可...
  • 9 篇 医学
    • 7 篇 临床医学
    • 3 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 2 篇 农学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 124 篇 proximal algorit...
  • 9 篇 convex optimizat...
  • 7 篇 optimization
  • 6 篇 distributed opti...
  • 6 篇 convergence
  • 6 篇 sparsity
  • 5 篇 nonconvex regula...
  • 4 篇 splitting algori...
  • 4 篇 denoising
  • 4 篇 nonconvex optimi...
  • 3 篇 sparse regulariz...
  • 3 篇 nonsmooth optimi...
  • 3 篇 convex minimizat...
  • 3 篇 image restoratio...
  • 3 篇 stochastic appro...
  • 3 篇 couplings
  • 3 篇 constrained opti...
  • 3 篇 matrix completio...
  • 3 篇 minimization
  • 3 篇 regularization

机构

  • 5 篇 north carolina s...
  • 2 篇 univ montpellier...
  • 2 篇 observ paris cnr...
  • 2 篇 politecn milan d...
  • 2 篇 inria f-38334 sa...
  • 2 篇 department of co...
  • 2 篇 shanghaitech uni...
  • 2 篇 hong kong univ s...
  • 2 篇 univ grenoble al...
  • 2 篇 tsinghua univ de...
  • 2 篇 hong kong baptis...
  • 1 篇 univ paris sacla...
  • 1 篇 school of comput...
  • 1 篇 dalian univ tech...
  • 1 篇 univ mohammed 5 ...
  • 1 篇 beijing univ che...
  • 1 篇 upmc universite ...
  • 1 篇 department of co...
  • 1 篇 cncpst f-75252 p...
  • 1 篇 univ zanjan dept...

作者

  • 9 篇 combettes patric...
  • 6 篇 pesquet jean-chr...
  • 3 篇 kwok james t.
  • 3 篇 chouzenoux emili...
  • 3 篇 yao quanming
  • 2 篇 pesquet j. -c.
  • 2 篇 lemaréchal c
  • 2 篇 bertsekas dimitr...
  • 2 篇 cong fengyu
  • 2 篇 prandini maria
  • 2 篇 pustelnik n.
  • 2 篇 jin danqi
  • 2 篇 lu jie
  • 2 篇 falsone alessand...
  • 2 篇 wu xuyang
  • 2 篇 chaux caroline
  • 2 篇 malick jerome
  • 2 篇 bougeard ml
  • 2 篇 corbineau marie-...
  • 2 篇 cabot a.

语言

  • 119 篇 英文
  • 5 篇 其他
检索条件"主题词=Proximal algorithm"
124 条 记 录,以下是71-80 订阅
排序:
proximal DEEP RECURRENT NEURAL NETWORK FOR MONAURAL SINGING VOICE SEPARATION  44
PROXIMAL DEEP RECURRENT NEURAL NETWORK FOR MONAURAL SINGING ...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Yuan, Weitao Wang, Shengbei Li, Xiangrui Unoki, Masashi Wang, Wenwu Tianjin Polytech Univ Tianjin Key Lab Autonomous Intelligence Technol & Tianjin Peoples R China Japan Adv Inst Sci & Technol Nomi Japan Univ Surrey Guildford Surrey England
The recent deep learning methods can offer state-of-the-art performance for Monaural Singing Voice Separation (MSVS). In these deep methods, the recurrent neural network (RNN) is widely employed. This work proposes a ... 详细信息
来源: 评论
Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2019年 第11期41卷 2628-2643页
作者: Yao, Quanming Kwok, James T. Wang, Taifeng Liu, Tie-Yan 4Paradigm Inc Beijing 100089 Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Clear Water Bay Hong Kong Peoples R China Microsoft Res Asia Machine Learning Grp Beijing 100010 Peoples R China Microsoft Res Asia Beijing 100010 Peoples R China
Low-rank modeling has many important applications in computer vision and machine learning. While the matrix rank is often approximated by the convex nuclear norm, the use of nonconvex low-rank regularizers has demonst... 详细信息
来源: 评论
Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis
收藏 引用
IEEE ACCESS 2019年 7卷 76131-76144页
作者: Liu, Qinghua Shen, Xinyue Gu, Yuantao Tsinghua Univ Bejing Natl Res Ctr Informat Sci & Technol BNRist Beijing 100084 Peoples R China Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China
Linearized alternating direction method of multipliers (ADMM) as an extension of ADMM has been widely used to solve linearly constrained problems in signal processing, machine learning, communications, and many other ... 详细信息
来源: 评论
ADAPTIVE FISTA FOR NONCONVEX OPTIMIZATION
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2019年 第4期29卷 2482-2503页
作者: Ochs, Peter Pock, Thomas Saarland Univ Fac Math & Comp Sci Campus E1-7 D-66123 Saarbrucken Germany Graz Univ Technol Inst Comp Graph & Vis Inffeldgasse 16-2 A-8010 Graz Austria
In this paper we propose an adaptively extrapolated proximal gradient method, which is based on the accelerated proximal gradient method (also known as FISTA);however, we locally optimize the extrapolation parameter b... 详细信息
来源: 评论
Improving POI Recommendation via Non-Convex Regularized Tensor Completion
收藏 引用
Journal of Information Hiding and Privacy Protection 2020年 第3期2卷 125-134页
作者: Ming Zhao Tao Liu School of Computer Science and Engineering Central South UniversityChangsha410000China
The problem of low accuracy of POI(Points of Interest)recommendation in LBSN(Location-Based Social Networks)has not been effectively *** this paper,a POI recommendation algorithm based on non-convex regularized tensor... 详细信息
来源: 评论
A cubic spline penalty for sparse approximation under tight frame balanced model
收藏 引用
ADVANCES IN COMPUTATIONAL MATHEMATICS 2020年 第2期46卷 36-36页
作者: Pang, Tongyao Wu, Chunlin Liu, Zhifang Natl Univ Singapore Dept Math Singapore 119076 Singapore Nankai Univ Sch Math Sci Tianjin 300071 Peoples R China Tianjin Normal Univ Sch Math Sci Tianjin 300387 Peoples R China
The study of non-convex penalties has recently received considerable attentions in sparse approximation. The existing non-convex penalties are proposed on the principle of seeking for a continuous alternative to the l... 详细信息
来源: 评论
CALIBRATIONLESS OSCAR-BASED IMAGE RECONSTRUCTION IN COMPRESSED SENSING PARALLEL MRI  16
CALIBRATIONLESS OSCAR-BASED IMAGE RECONSTRUCTION IN COMPRESS...
收藏 引用
16th IEEE International Symposium on Biomedical Imaging (ISBI)
作者: El Gueddari, L. Ciuciu, P. Chouzenoux, E. Vignaud, A. Pesquet, J-C CEA NeuroSpin Bat 145 F-91191 Gif Sur Yvette France Univ Paris Saclay Parietal Team INRIA CEA Saclay Ile de France St Aubin France Univ Paris Saclay Cent Supelec CVN St Aubin France Paris Est Univ LIGM Champs Sur Marne France
Reducing acquisition time is a crucial issue in MRI especially in the high resolution context. Compressed sensing has faced this problem for a decade. However, to maintain a high signal-to-noise ratio (SNR), CS must b... 详细信息
来源: 评论
LEARNING COMPACT PARTIAL DIFFERENTIAL EQUATIONS FOR COLOR IMAGES WITH EFFICIENCY  44
LEARNING COMPACT PARTIAL DIFFERENTIAL EQUATIONS FOR COLOR IM...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhao, Zhenyu Hou, Chenping Lin, Bo Fang, Cong Natl Univ Def Technol Coll Liberal Arts & Sci Changsha Hunan Peoples R China Peking Univ Sch EECS Key Lab Machine Percept MOE Beijing Peoples R China
Learning Partial Differential Equations (LPDEs) from training data for particular tasks has been successfully applied to many image processing problems. In this paper, we aim to learn compact Partial Differential Equa... 详细信息
来源: 评论
Error Bounds, Quadratic Growth, and Linear Convergence of proximal Methods
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 2018年 第3期43卷 919-948页
作者: Drusvyatskiy, Dmitriy Lewis, Adrian S. Univ Washington Dept Math Seattle WA 98195 USA Cornell Univ Sch Operat Res & Informat Engn Ithaca NY 14853 USA
The proximal gradient algorithm for minimizing the sum of a smooth and nonsmooth convex function often converges linearly even without strong convexity. One common reason is that a multiple of the step length at each ... 详细信息
来源: 评论
Consistent learning by composite proximal thresholding
收藏 引用
MATHEMATICAL PROGRAMMING 2018年 第1期167卷 99-127页
作者: Combettes, Patrick L. Salzo, Saverio Villa, Silvia North Carolina State Univ Dept Math Box 8205 Raleigh NC 27695 USA MIT Lab Computat & Stat Learning I-16163 Genoa Italy Ist Italiano Tecnol I-16163 Genoa Italy Politecn Milan Dipartimento Matemat I-20133 Milan Italy
We investigate the modeling and the numerical solution of machine learning problems with prediction functions which are linear combinations of elements of a possibly infinite dictionary of functions. We propose a nove... 详细信息
来源: 评论