咨询与建议

限定检索结果

文献类型

  • 34 篇 期刊文献
  • 3 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 38 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 理学
    • 24 篇 数学
    • 3 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 1 篇 地球物理学
    • 1 篇 生物学
  • 18 篇 工学
    • 10 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 4 篇 信息与通信工程
    • 3 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 测绘科学与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
  • 5 篇 医学
    • 5 篇 临床医学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 法学

主题

  • 38 篇 proximal gradien...
  • 4 篇 convex optimizat...
  • 3 篇 global convergen...
  • 2 篇 extrapolation
  • 2 篇 fista
  • 2 篇 soft-thresholdin...
  • 2 篇 image restoratio...
  • 2 篇 matrix completio...
  • 2 篇 bounded perturba...
  • 2 篇 strong convergen...
  • 1 篇 distributed opti...
  • 1 篇 image fusion
  • 1 篇 penalized estima...
  • 1 篇 asynchronous met...
  • 1 篇 lojasiewicz ineq...
  • 1 篇 nesterov acceler...
  • 1 篇 majorized penalt...
  • 1 篇 network topology...
  • 1 篇 shrinkage
  • 1 篇 iterative thresh...

机构

  • 2 篇 shenzhen univ sc...
  • 2 篇 guangdong univ t...
  • 2 篇 civil aviat univ...
  • 2 篇 natl univ def te...
  • 2 篇 natl univ def te...
  • 1 篇 natl univ def te...
  • 1 篇 nanjing univ inf...
  • 1 篇 mayo clin div bi...
  • 1 篇 sun yat sen univ...
  • 1 篇 univ grenoble al...
  • 1 篇 lsec icmsec acad...
  • 1 篇 fudan univ sch m...
  • 1 篇 school of artifi...
  • 1 篇 ocean univ china...
  • 1 篇 univ littoral co...
  • 1 篇 tech univ cluj n...
  • 1 篇 aix marseille un...
  • 1 篇 rmit univ sch en...
  • 1 篇 univ estadual ca...
  • 1 篇 microsoft redmon...

作者

  • 3 篇 malick jerome
  • 3 篇 iutzeler franck
  • 2 篇 hu yaohua
  • 2 篇 hu xinlin
  • 2 篇 cheng lizhi
  • 2 篇 jiang hao
  • 2 篇 barrio roberto
  • 1 篇 xue xiaoping
  • 1 篇 hansen niels ric...
  • 1 篇 kwok wai yu cari...
  • 1 篇 yu wenwu
  • 1 篇 chen xuesong
  • 1 篇 el hachimi a.
  • 1 篇 duan peichao
  • 1 篇 pakkaranang nutt...
  • 1 篇 xiao gang
  • 1 篇 lund adam
  • 1 篇 qin jing
  • 1 篇 nimana nimit
  • 1 篇 tian xinyu

语言

  • 35 篇 英文
  • 3 篇 其他
检索条件"主题词=Proximal gradient algorithm"
38 条 记 录,以下是1-10 订阅
排序:
Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery
收藏 引用
JOURNAL OF SUPERCOMPUTING 2020年 第12期76卷 9456-9477页
作者: Pakkaranang, Nuttapol Kumam, Poom Berinde, Vasile Suleiman, Yusuf I. KMUTT Ctr Excellence Theoret & Computat Sci TaCS CoE KMUTT Fixed Point Theory & Applicat Res Grp KMUTT Sci Lab Bldg126 Pracha Uthit Rd Bangkok 10140 Thailand KMUTT KMUTTFixed Point Res Lab Dept Math Fac Sci Room SCL 802 Fixed Point LabSci Lab Bldg Bangkok 10140 Thailand China Med Univ China Med Univ Hosp Dept Med Res Taichung 40402 Taiwan Tech Univ Cluj Napoca Dept Math & Comp Sci North Univ Ctr Baia Mare Victorie 76 Baia Mare 430072 Romania Kano Univ Sci & Technol Dept Math PMB 3042 Kano Nigeria
In this paper, we construct a novel algorithm for solving non-smooth composite optimization problems. By using inertial technique, we propose a modified proximal gradient algorithm with outer perturbations, and under ... 详细信息
来源: 评论
On the convergence of the iterates of proximal gradient algorithm with extrapolation for convex nonsmooth minimization problems
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2019年 第3期75卷 767-787页
作者: Wen, Bo Xue, Xiaoping Hebei Univ Technol Inst Math Tianjin Peoples R China Harbin Inst Technol Dept Math Harbin Heilongjiang Peoples R China Harbin Inst Technol Inst Adv Study Math Harbin Heilongjiang Peoples R China
In this paper, we consider the proximal gradient algorithm with extrapolation for solving a class of convex nonsmooth minimization problems. We show that for a large class of extrapolation parameters including the ext... 详细信息
来源: 评论
A DISTRIBUTED FLEXIBLE DELAY-TOLERANT proximal gradient algorithm
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2020年 第1期30卷 933-959页
作者: Mishchenko, Konstantin Iutzeler, Franck Malick, Jerome KAUST Thuwal Saudi Arabia Univ Grenoble Alpes Lab Jean Kuntzmann Grenoble France CNRS Lab Jean Kuntzmann Grenoble France
We develop and analyze an asynchronous algorithm for distributed convex optimization when the objective can be written as a sum of smooth functions, local to each worker, and a nonsmooth function. Unlike many existing... 详细信息
来源: 评论
On the proximal gradient algorithm with Alternated Inertia
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 2018年 第3期176卷 688-710页
作者: Iutzeler, Franck Malick, Jerome Univ Grenoble Alpes Grenoble France CNRS LJK Grenoble France
In this paper, we investigate attractive properties of the proximal gradient algorithm with inertia. Notably, we show that using alternated inertia yields monotonically decreasing functional values, which contrasts wi... 详细信息
来源: 评论
Control proximal gradient algorithm for image l1 regularization
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2019年 第6期13卷 1113-1121页
作者: El Mouatasim, Abdelkrim Univ Ibn Zohr Fac Polydisplinaire BP 284 Ouarzazate 45800 Morocco
We consider a control proximal gradient algorithm (CPGA) for solving the minimization of a nonsmooth convex function. In particular, the convex function is an l(1) regularized least squares function derived by the dis... 详细信息
来源: 评论
A diagonal finite element-projection-proximal gradient algorithm for elliptic optimal control problem
收藏 引用
COMPUTERS & MATHEMATICS WITH APPLICATIONS 2023年 148卷 256-268页
作者: Lin, Jitong Chen, Xuesong Guangdong Univ Technol Sch Math & Stat Guangzhou 510520 Peoples R China
A diagonal finite element-projection-proximal gradient (DFE-P-PG) algorithm and its accelerated forms for elliptic optimal control problem with ������1-control cost are proposed in this paper. Firstly, the elliptic op... 详细信息
来源: 评论
An inexact proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth optimization problems
收藏 引用
JOURNAL OF INEQUALITIES AND APPLICATIONS 2019年 第1期2019卷 1-16页
作者: Jia, Zehui Wu, Zhongming Dong, Xiaomei Nanjing Univ Informat Sci & Technol Sch Math & Stat Dept Informat & Comp Sci Nanjing Jiangsu Peoples R China Southeast Univ Sch Econ & Management Nanjing Jiangsu Peoples R China Nanjing Normal Univ Sch Math Sci Nanjing Jiangsu Peoples R China
In this paper, we propose an inexact version of proximal gradient algorithm with extrapolation for solving a class of nonconvex nonsmooth optimization problems. Specifically, the subproblem in proximal gradient algori... 详细信息
来源: 评论
Bregman proximal gradient algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems
收藏 引用
IEEE ACCESS 2019年 7卷 126515-126529页
作者: Zhang, Xiaoya Barrio, Roberto Angeles Martinez, M. Jiang, Hao Cheng, Lizhi Natl Univ Def Technol Dept Math Changsha 410073 Hunan Peoples R China Univ Zaragoza Dept Matemat Aplicada E-50009 Zaragoza Spain Natl Univ Def Technol Coll Comp Changsha 410073 Hunan Peoples R China
In this paper, we consider an accelerated method for solving nonconvex and nonsmooth minimization problems. We propose a Bregman proximal gradient algorithm with extrapolation (BPGe). This algorithm extends and accele... 详细信息
来源: 评论
Strong convergence of over-relaxed multi-parameter proximal scaled gradient algorithm and superiorization
收藏 引用
OPTIMIZATION 2021年 第3期70卷 461-480页
作者: Guo, Yanni Zhao, Xiaozhi Civil Aviat Univ China Coll Sci Tianjin Peoples R China
In this paper, we propose an over-relaxed proximal scaled gradient algorithm for solving the non-smooth composite optimization problem in Hilbert space. We prove the strong convergence and the bounded perturbation res... 详细信息
来源: 评论
A Mini-Batch proximal Stochastic Recursive gradient algorithm with Diagonal Barzilai–Borwein Stepsize
收藏 引用
Journal of the Operations Research Society of China 2023年 第2期11卷 277-307页
作者: Teng-Teng Yu Xin-Wei Liu Yu-Hong Dai Jie Sun School of Artificial Intelligence Hebei University of TechnologyTianjin 300401China Institute of Mathematics Hebei University of TechnologyTianjin 300401China LSEC ICMSECAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China School of Business National University of SingaporeSingapore 119245Singapore
Many machine learning problems can be formulated as minimizing the sum of a function and a non-smooth regularization *** stochastic gradient methods are popular for solving such composite optimization *** propose a mi... 详细信息
来源: 评论