咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 工学
    • 11 篇 计算机科学与技术...
    • 8 篇 控制科学与工程
    • 7 篇 电气工程
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 软件工程
    • 2 篇 动力工程及工程热...
    • 2 篇 信息与通信工程
    • 2 篇 石油与天然气工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
  • 10 篇 管理学
    • 10 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 物理学

主题

  • 21 篇 proximal policy ...
  • 13 篇 deep reinforceme...
  • 2 篇 reinforcement le...
  • 2 篇 guandan
  • 2 篇 manipulator cont...
  • 2 篇 self-learning
  • 2 篇 imperfect inform...
  • 1 篇 internet of thin...
  • 1 篇 obstacle distrib...
  • 1 篇 robotic arm moti...
  • 1 篇 online combustio...
  • 1 篇 uav altitude con...
  • 1 篇 segmented adapti...
  • 1 篇 advantage actor ...
  • 1 篇 relays
  • 1 篇 electricity mark...
  • 1 篇 bi-level optimiz...
  • 1 篇 a* algorithm
  • 1 篇 age of informati...
  • 1 篇 value -based rev...

机构

  • 1 篇 army engn univ p...
  • 1 篇 jiangnan univ sc...
  • 1 篇 nanjing univ aer...
  • 1 篇 shanghai jiao to...
  • 1 篇 suzhou univ sci ...
  • 1 篇 changchun univ s...
  • 1 篇 shanghai baosigh...
  • 1 篇 college of elect...
  • 1 篇 shandong univ de...
  • 1 篇 school of comput...
  • 1 篇 dalian univ tech...
  • 1 篇 hunan univ finan...
  • 1 篇 wuhan univ sch i...
  • 1 篇 texas a&m univ q...
  • 1 篇 nanjing audit un...
  • 1 篇 jiangsu marine r...
  • 1 篇 minist nat resou...
  • 1 篇 anhui univ sch c...
  • 1 篇 changchun univ s...
  • 1 篇 jiangsu ocean un...

作者

  • 1 篇 wang yanhong
  • 1 篇 jiahong pan
  • 1 篇 ding hongchang
  • 1 篇 hengheng shen
  • 1 篇 li liang
  • 1 篇 shaoxiong yang
  • 1 篇 assi chadi
  • 1 篇 wang hui
  • 1 篇 chen huafeng
  • 1 篇 zhou jiantao
  • 1 篇 chen xuemei
  • 1 篇 jin xin
  • 1 篇 sun jialong
  • 1 篇 wu jie
  • 1 篇 zhang hongnan
  • 1 篇 pan jiahong
  • 1 篇 zhao bo
  • 1 篇 gao zhilie
  • 1 篇 wei wenmiao
  • 1 篇 wei qinglai

语言

  • 19 篇 英文
  • 1 篇 其他
检索条件"主题词=Proximal policy optimization algorithm"
21 条 记 录,以下是1-10 订阅
排序:
proximal policy optimization algorithm for dynamic pricing with online reviews
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2023年 第PartC期213卷
作者: Wu, Chao Bi, Wenjie Liu, Haiying Cent South Univ Business Sch Changsha 410083 Peoples R China Hunan Univ Finance & Econ Accounting Sch Changsha 410083 Peoples R China
This study investigates whether the presence of both quality-and value-based online reviews help firms make decisions. To adapt to a complex real-world environment, we construct two simulated environments with high an... 详细信息
来源: 评论
Combustion optimization study of pulverized coal boiler based on proximal policy optimization algorithm
收藏 引用
APPLIED THERMAL ENGINEERING 2024年 254卷
作者: Wu, Xuecheng Zhang, Hongnan Chen, Huafeng Wang, Shifeng Gong, Lingling Zhejiang Univ Ningbo Innovat Ctr Ningbo 315100 Peoples R China Zhejiang Univ State Key Lab Clean Energy Utilizat Hangzhou 310027 Peoples R China Hangzhou Vocat & Tech Coll Hangzhou 310019 Peoples R China Zhejiang Tech Inst Econ Hangzhou 310018 Peoples R China
In most industrial sectors, large coal-fired boilers are a source of carbon and pollutant emissions, so it is important to carry out combustion adjustment and optimize energy-saving operation of coal-fired boilers. Tr... 详细信息
来源: 评论
Research on Manipulator Control Based on Improved proximal policy optimization algorithm  34
Research on Manipulator Control Based on Improved Proximal P...
收藏 引用
34th Chinese Control and Decision Conference (CCDC)
作者: Yang, Shaoxiong Wu, Di Pan, Yan He, Yan Dalian Univ Technol Sch Control Sci & Control Engn Dalian 116024 Peoples R China Dalian Univ Technol Sch Naval Architecture & Ocean Engn Dalian 116024 Peoples R China Zhengzhou Univ Light Ind Coll Elect & Informat Engn Zhengzhou 450000 Peoples R China
In the scene of random patching in the industrial scene, an algorithm based on a distributed frame of proximal policy optimization (PPO) with Generalized Advantage Estimation (GAE) is proposed in this paper. The visua... 详细信息
来源: 评论
Research on Manipulator Control Based on Improved proximal policy optimization algorithm
Research on Manipulator Control Based on Improved Proximal P...
收藏 引用
第34届中国控制与决策会议
作者: Shaoxiong Yang Di Wu Yan Pan Yan He School of Control Science and Control Engineering Dalian University of Technology School of Naval Architecture & Ocean Engineering Dalian University of Technology College of Electrical and Information Engineering Zhengzhou University of Light Industry
In the scene of random patching in the industrial scene,an algorithm based on a distributed frame of proximal policy optimization(PPO) with Generalized Advantage Estimation(GAE) is proposed in this *** visual part is ... 详细信息
来源: 评论
proximal policy optimization based dynamic path planning algorithm for mobile robots
收藏 引用
ELECTRONICS LETTERS 2022年 第1期58卷 13-15页
作者: Jin, Xin Wang, Zhengxiao Zhejiang Univ Dept Mech Engn 38 ZheDa St Hangzhou Peoples R China
For the scenario where the overall layout is known and the obstacle distribution information is unknown, a dynamic path planning algorithm combining the A* algorithm and the proximal policy optimization (PPO) algorith... 详细信息
来源: 评论
proximal policy optimization approach to stabilize the chaotic food web system
收藏 引用
CHAOS SOLITONS & FRACTALS 2025年 192卷
作者: Xu, Liang Ma, Ru-Ru Wu, Jie Rao, Pengchun Jiangnan Univ Sch Artificial Intelligence & Comp Sci Wuxi 214122 Peoples R China Suzhou Univ Sci & Technol Sch Math Sci Suzhou 215009 Peoples R China East China Jiaotong Univ Coll Sci Nanchang 330013 Peoples R China
Chaos phenomena can be observed extensively in many real-world scenarios, which usually presents a challenge to suppress those undesired behaviors. Unlike the traditional linear and nonlinear control methods, this stu... 详细信息
来源: 评论
A novel proximal policy optimization control strategy for unmanned surface vehicle  35
A novel proximal policy optimization control strategy for un...
收藏 引用
35th Chinese Control and Decision Conference (CCDC)
作者: Wu, Shuai Xue, Wentao Ye, Hui Li, Shun Jiangsu Univ Sci & Technol Sch Automat Zhenjiang Jiangsu Peoples R China
A novel proximal policy optimization (PPO) algorithm is proposed to solve the motion control problem for an underactuated unmanned surface vehicle (USV). In order to solve the zero-gradient problem of the algorithm du... 详细信息
来源: 评论
An innovative deep reinforcement learning-driven cutting parameters adaptive optimization method taking tool wear into account
收藏 引用
MEASUREMENT 2025年 242卷
作者: Gao, Zhilie Chen, Ni Yang, Yingfei Li, Liang Nanjing Univ Aeronaut & Astronaut Coll Mech & Elect Engn Nanjing 210016 Peoples R China
Tool wear is critically important for the optimization of cutting parameters. However, the increasing nature of tool wear presents challenges to traditional meta-heuristic cutting parameter optimization methods. To ad... 详细信息
来源: 评论
Deep reinforcement learning-based optimal bidding strategy for real-time multi-participant electricity market with short-term load
收藏 引用
ELECTRIC POWER SYSTEMS RESEARCH 2024年 233卷
作者: Liu, Chuwei Rao, Xuan Zhao, Bo Liu, Derong Wei, Qinglai Wang, Yonghua Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China Beijing Normal Univ Sch Syst Sci Beijing 100875 Peoples R China Southern Univ Sci & Technol Sch Syst Design & Intelligent Mfg Shenzhen 518055 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China
This paper aims to address the bidding strategy optimization in the real-time multi-participant electricity market with short-term load dynamics. In order to avoid the sub-optimal solution and the dependence on the co... 详细信息
来源: 评论
A dynamic flexible job shop scheduling method based on collaborative agent reinforcement learning
收藏 引用
FLEXIBLE SERVICES AND MANUFACTURING JOURNAL 2024年 1-33页
作者: Shao, Changshun Yu, Zhenglin Ding, Hongchang Cao, Guohua Ding, Kaifang Duan, Jingsong Changchun Univ Sci & Technol Coll Mech & Elect Engn Changchun 130022 Jilin Peoples R China Changchun Univ Sci & Technol Chongqing Res Inst Chongqing 401135 Peoples R China
This paper presents an innovative approach to solve the Dynamic Flexible Job Shop Scheduling Problem (DFJSP). Our method aims to enhance production efficiency by minimizing the average total tardiness. To achieve this... 详细信息
来源: 评论