咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 工学
    • 3 篇 电气工程
    • 3 篇 计算机科学与技术...
    • 2 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
  • 1 篇 理学
    • 1 篇 生物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 5 篇 q-learning model
  • 2 篇 path planning
  • 1 篇 sheep flock opti...
  • 1 篇 internet of thin...
  • 1 篇 reinforcement le...
  • 1 篇 5-armed bandit t...
  • 1 篇 learning rate
  • 1 篇 social networks
  • 1 篇 discrete differe...
  • 1 篇 global optimizat...
  • 1 篇 shortest path
  • 1 篇 hotspots
  • 1 篇 unmanned aerial ...
  • 1 篇 reinforcement le...
  • 1 篇 sequential seedi...
  • 1 篇 aging
  • 1 篇 multi-agent syst...
  • 1 篇 imperfect-inform...
  • 1 篇 fog computing
  • 1 篇 influence maximi...

机构

  • 1 篇 natl def med col...
  • 1 篇 indian inst tech...
  • 1 篇 natl inst techno...
  • 1 篇 natl def med col...
  • 1 篇 indian inst tech...
  • 1 篇 fujita hlth univ...
  • 1 篇 nanjing univ dep...
  • 1 篇 lanzhou univ tec...
  • 1 篇 fujita hlth univ...
  • 1 篇 auburn univ dept...
  • 1 篇 mejiro univ 4-31...
  • 1 篇 lanzhou univ tec...

作者

  • 1 篇 saha seemanti
  • 1 篇 zhang baoming
  • 1 篇 li kefan
  • 1 篇 mukherjee ananda...
  • 1 篇 du qian
  • 1 篇 tang jianxin
  • 1 篇 koppala naimisha
  • 1 篇 kumar vikash
  • 1 篇 nozawa takashi
  • 1 篇 xu ming
  • 1 篇 ohta hiroyuki
  • 1 篇 deb pallav kumar
  • 1 篇 zhang jie
  • 1 篇 zhu hongyu
  • 1 篇 mao shiwen
  • 1 篇 nakano takashi
  • 1 篇 morimoto yuji
  • 1 篇 wang chongjun
  • 1 篇 song shihui
  • 1 篇 ishizuka toshiak...

语言

  • 5 篇 英文
检索条件"主题词=Q-Learning Model"
5 条 记 录,以下是1-10 订阅
排序:
qMIMC: q-learning model Based on Imperfect-information under Multi-agent Crowdtesting  19
QMIMC: Q-Learning Model Based on Imperfect-information under...
收藏 引用
19th IEEE International Symposium on Parallel and Distributed Processing with Applications (IEEE ISPA)
作者: Zhang, Jie Li, Kefan Zhang, Baoming Xu, Ming Wang, Chongjun Nanjing Univ Dept Comp Sci & Technol State Key Lab Novel Software Technol Nanjing Peoples R China
Crowdtesting is one of the hot spots in artificial intelligence in recent years. Among which multi-agent crowdtesting system is a method to deal with the complex problems in crowdtesting process. How to improve the ef... 详细信息
来源: 评论
Robust q-learning-based multi-objective sheep flock optimizer with a Cauchy operator for effective path planning in unmanned aerial vehicles
收藏 引用
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS 2024年 第2期37卷
作者: Kumar, Vikash Saha, Seemanti Natl Inst Technol Dept Elect & Commun Engn Patna 800005 India
Unmanned aerial vehicle (UAV) path planning can be treated as a nondeterministic polynomial (NP) hard concern or an optimization problem. The conventional approaches are unable to effectively handle these issues due t... 详细信息
来源: 评论
Sequential seeding policy on social influence maximization: a q-learning-driven discrete differential evolution optimization
收藏 引用
JOURNAL OF SUPERCOMPUTING 2024年 第3期80卷 3334-3359页
作者: Tang, Jianxin Song, Shihui Zhu, Hongyu Du, qian qu, Jitao Lanzhou Univ Technol Sch Comp & Commun Lanzhou 730050 Peoples R China Lanzhou Univ Technol Wenzhou Engn Inst Pump & Valve Wenzhou 325100 Peoples R China
The influence maximization problem that has caused great attention in social network analysis aims at selecting a small set of influential spreaders so that the information cascade triggered by the seed set is maximiz... 详细信息
来源: 评论
Nonlinear age-related differences in probabilistic learning in mice: A 5-armed bandit task study
收藏 引用
NEUROBIOLOGY OF AGING 2024年 142卷 8-16页
作者: Ohta, Hiroyuki Nozawa, Takashi Nakano, Takashi Morimoto, Yuji Ishizuka, Toshiaki Natl Def Med Coll Dept Pharmacol 3-2 Namiki Tokorozawa Saitama 3598513 Japan Mejiro Univ 4-31-1 Naka Ochiai Tokyo Tokyo 1618539 Japan Fujita Hlth Univ Sch Med Dept Computat Biol 1-98 Dengakugakubo Toyoake Aichi 4701192 Japan Fujita Hlth Univ Int Ctr Brain Sci ICBS 1-98 Dengakugakubo Toyoake Aichi 4701192 Japan Natl Def Med Coll Dept Physiol 3-2 Namiki Tokorozawa Saitama 3598513 Japan
This study explores the impact of aging on reinforcement learning in mice, focusing on changes in learning rates and behavioral strategies. A 5-armed bandit task (5-ABT) and a computational q-learning model were used ... 详细信息
来源: 评论
S-Nav: Safety-Aware IoT Navigation Tool for Avoiding COVID-19 Hotspots
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2021年 第8期8卷 6975-6982页
作者: Misra, Sudip Deb, Pallav Kumar Koppala, Naimisha Mukherjee, Anandarup Mao, Shiwen Indian Inst Technol Kharagpur Dept Comp Sci & Engn Kharagpur 721302 W Bengal India Indian Inst Technol Delhi Dept Math & Comp New Delhi 110016 India Auburn Univ Dept Elect & Comp Engn Auburn AL 36849 USA
In this article, we present a q-learning-enabled safe navigation system-S-Nav-that recommends routes in a road network by minimizing traveling through categorically demarcated COVID-19 hotspots. S-Nav takes the source... 详细信息
来源: 评论