咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 71 篇 会议

馆藏范围

  • 199 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 91 篇 计算机科学与技术...
    • 79 篇 电气工程
    • 41 篇 控制科学与工程
    • 37 篇 信息与通信工程
    • 18 篇 石油与天然气工程
    • 12 篇 软件工程
    • 11 篇 机械工程
    • 10 篇 仪器科学与技术
    • 8 篇 电子科学与技术(可...
    • 7 篇 动力工程及工程热...
    • 5 篇 交通运输工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 船舶与海洋工程
    • 3 篇 土木工程
    • 3 篇 环境科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 水利工程
    • 2 篇 航空宇航科学与技...
    • 1 篇 光学工程
  • 36 篇 管理学
    • 34 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 23 篇 理学
    • 12 篇 数学
    • 5 篇 物理学
    • 5 篇 系统科学
    • 3 篇 化学
    • 2 篇 生物学
    • 1 篇 海洋科学
  • 5 篇 经济学
    • 4 篇 应用经济学
    • 2 篇 理论经济学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 农学

主题

  • 199 篇 q-learning algor...
  • 52 篇 reinforcement le...
  • 12 篇 learning (artifi...
  • 11 篇 optimization
  • 10 篇 path planning
  • 9 篇 markov decision ...
  • 8 篇 q-learning
  • 7 篇 quality of servi...
  • 6 篇 heuristic algori...
  • 5 篇 convergence
  • 5 篇 mobile robot
  • 5 篇 resource allocat...
  • 5 篇 machine learning
  • 5 篇 dynamic scheduli...
  • 4 篇 internet of thin...
  • 4 篇 task analysis
  • 4 篇 automatic genera...
  • 4 篇 radio networks
  • 4 篇 jamming attack
  • 4 篇 cognitive radio ...

机构

  • 3 篇 natl taiwan univ...
  • 3 篇 mississippi stat...
  • 2 篇 hong kong polyte...
  • 2 篇 s china univ tec...
  • 2 篇 northeastern uni...
  • 2 篇 aristotle univ t...
  • 2 篇 nanjing tech uni...
  • 2 篇 northwestern pol...
  • 2 篇 univ sains malay...
  • 2 篇 nanyang technol ...
  • 2 篇 kun shan univ te...
  • 2 篇 mil acad tunisia...
  • 2 篇 nagoya univ dept...
  • 2 篇 hong kong polyte...
  • 2 篇 china commun inf...
  • 2 篇 jiangsu normal u...
  • 1 篇 nanjing univ pos...
  • 1 篇 beijing inst tec...
  • 1 篇 hainan inst zhej...
  • 1 篇 hangzhou dianzi ...

作者

  • 3 篇 scheers bart
  • 3 篇 stebel krzysztof
  • 3 篇 suandi shahrel a...
  • 3 篇 samma hussein
  • 3 篇 mohamad-saleh ju...
  • 3 篇 slimeni feten
  • 3 篇 chen jiann-liang
  • 3 篇 chtourou zied
  • 3 篇 le nir vincent
  • 2 篇 li ji
  • 2 篇 wang xingwei
  • 2 篇 xu yan
  • 2 篇 liu dexing
  • 2 篇 musial jakub
  • 2 篇 xu zhao
  • 2 篇 yang songpo
  • 2 篇 czeczot jacek
  • 2 篇 attia rabah
  • 2 篇 lu en
  • 2 篇 noori amin

语言

  • 193 篇 英文
  • 4 篇 其他
  • 2 篇 中文
  • 1 篇 德文
检索条件"主题词=Q-Learning algorithm"
199 条 记 录,以下是141-150 订阅
排序:
Designing Model-free Control Law for Slowly Varying Nonlinear Systems Based on Reinforcement learning  25
Designing Model-free Control Law for Slowly Varying Nonlinea...
收藏 引用
25th Iranian Conference on Electrical Engineering (ICEE)
作者: Noori, Amin Sadrnia, Mohammad Ali Sistani, Mohammad Bagher Naghibi Shahrood Univ Technol Control Engn Shahrood Iran Ferdowsi Univ Mashhad Control Engn Mashhad Iran
A method to control general slowly varying nonlinear systems based on reinforcement learning is proposed. Based on the q-Ieaning algorithm a model-free control signal is designed. However, this control signal is numer... 详细信息
来源: 评论
Practical aspects of the model-free learning control initialization  20
Practical aspects of the model-free learning control initial...
收藏 引用
20th International Conference on Methods and Models in Automation and Robotics (MMAR)
作者: Stebel, Krzysztof Silesian Tech Univ Inst Automat Control Gliwice Poland
The paper presents aspects of model-free learning control initialization. Model-free learning has several advantages as general purpose approach or adaptive capability. However, practical implementation is not intuiti... 详细信息
来源: 评论
Dynamic Enhanced Inter-Cell Interference Coordination using Reinforcement learning Approach in Heterogeneous Network
Dynamic Enhanced Inter-Cell Interference Coordination using ...
收藏 引用
15th IEEE International Conference on Communication Technology (ICCT)
作者: Li, qi Xia, Hailun Zeng, Zhimin Zhang, Tiankui Beijing Univ Posts & Telecommun Beijing 100876 Peoples R China
This paper investigates enhanced Inter-Cell Interference Coordination (eICIC) techniques for Heterogeneous Networks (HetNets), and models this strategic coexistence as a multi-player system in which interference manag... 详细信息
来源: 评论
Multi-agent reinforcement learning for strategic bidding in power markets
Multi-agent reinforcement learning for strategic bidding in ...
收藏 引用
3rd IEEE International Conference on Intelligent Systems
作者: Tellidou, Athina C. Bakirtzis, Anastasios G. Aristotle Univ Thessaloniki Dept Elect & Comp Engn Thessaloniki 54124 Greece
In the agent-based simulation discussed in this paper, we study the dynamics of the power market, when suppliers act following a q-learning based bidding strategy. Power suppliers aim to satisfy two objectives: the ma... 详细信息
来源: 评论
Multi-path Transmission Strategy for Deterministic Networks  13th
Multi-path Transmission Strategy for Deterministic Networks
收藏 引用
13th International Conference on Computer Engineering and Networks (CENet)
作者: Zheng, Fei Li, Kelin Zhou, Zou Hu, Yu Chen, Longjie Guilin Univ Elect Technol Minist Educ Key Lab Cognit Radio & Informat Proc Guilin 541004 Peoples R China
With the rapid growth of internet traffic, network congestion becomes more and more severe, which causes massive packets loss. The reliability and delay of data transmission needs to be guaranteed in real-time applica... 详细信息
来源: 评论
Car-Following Safe Headway Strategy with Battery-Health Conscious: A Reinforcement learning Approach
Car-Following Safe Headway Strategy with Battery-Health Cons...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Jia, Xi Peng, Jun Liu, Yongjie Liu, Bo Wang, Pingping Lu, Yao Wen, Mengfei Huang, Zhiwu Cent South Univ Sch Automat Changsha Peoples R China Cent South Univ Sch Comp Sci & Engn Changsha Peoples R China Hunan Engn Lab Rail Vehicles Braking Technol Changsha Peoples R China Changsha Coll Presch Educ Changsha Peoples R China
This paper proposes an optimal car-following strategy for pure electric vehicles (EVs) with the aim of keeping an expected headway of the leader and reducing vehicle battery loss. In particular, a car-following system... 详细信息
来源: 评论
Design of Reinforce learning Control algorithm and Verified in Inverted Pendulum  34
Design of Reinforce Learning Control Algorithm and Verified ...
收藏 引用
第三十四届中国控制会议
作者: WANG Linglin LIU Yongxin ZHAI Xiaoke College of electronic information engineering Inner Mongolia University
The reinforce leaning control algorithm is studied in this *** algorithms are designed using one-stage inverted pendulum as an *** is q-learning control algorithm,the other is also this algorithm but its parameters ar... 详细信息
来源: 评论
Study on motion forms of a two-dimensional mobile robot by using reinforcement learning
Study on motion forms of a two-dimensional mobile robot by u...
收藏 引用
SICE-ICASE International Joint Conference
作者: Jung, Youngmi Inoue, Masashi Hara, Masayuki Huang, Jian Yabuta, Tetsuro Yokohama Natl Univ Dept Mech Engn Grad Sch Engn Yokohama Kanagawa 240 Japan
The main advantage of Reinforcement learning is that it provides unexpected solutions for a designer. This study shows how a mobile robot can obtain unexpected motion forms by using Reinforcement learning. Results sho... 详细信息
来源: 评论
A GREEN INTELLIGENT UNICAST ROUTING algorithm
A GREEN INTELLIGENT UNICAST ROUTING ALGORITHM
收藏 引用
5th IEEE International Conference on Broadband Network & Multimedia Technology (IC-BNMT)
作者: Zhang, Jinhong Wang, Xingwei Huang, Min Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Peoples R China
For the past years, the energy overconsumption problems, arising from the rapid growth of Internet scale and services types, are becoming more and more serious. In this context, the Information and Communication Techn... 详细信息
来源: 评论
Hierarchical Multi-agent System in Traffic Network Signalization with Improved Genetic algorithm
Hierarchical Multi-agent System in Traffic Network Signaliza...
收藏 引用
IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)
作者: Tan, Min Keng Chuo, Helen Sin Ee Chin, Renee Ka Yin Yeo, Kiam Beng Teo, Kenneth Tze Kin Univ Malaysia Sabah Fac Engn Modelling Simulat & Comp Lab Kota Kinabalu Malaysia Univ Malaysia Sabah Fac Med & Hlth Sci Kota Kinabalu Malaysia
Instead of using classical offline data-driven optimization technique in traffic network signal control, this work aims to explore the potential of implementing an online data-driven optimization technique. A dynamic ... 详细信息
来源: 评论