咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 71 篇 会议

馆藏范围

  • 199 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 92 篇 计算机科学与技术...
    • 78 篇 电气工程
    • 41 篇 控制科学与工程
    • 39 篇 信息与通信工程
    • 18 篇 石油与天然气工程
    • 12 篇 软件工程
    • 11 篇 机械工程
    • 10 篇 仪器科学与技术
    • 9 篇 动力工程及工程热...
    • 9 篇 电子科学与技术(可...
    • 5 篇 材料科学与工程(可...
    • 4 篇 交通运输工程
    • 4 篇 船舶与海洋工程
    • 3 篇 土木工程
    • 3 篇 环境科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 水利工程
    • 2 篇 航空宇航科学与技...
    • 1 篇 光学工程
  • 36 篇 管理学
    • 34 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 23 篇 理学
    • 12 篇 数学
    • 5 篇 物理学
    • 5 篇 系统科学
    • 3 篇 化学
    • 2 篇 生物学
    • 1 篇 海洋科学
  • 5 篇 经济学
    • 4 篇 应用经济学
    • 2 篇 理论经济学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 农学

主题

  • 199 篇 q-learning algor...
  • 51 篇 reinforcement le...
  • 11 篇 path planning
  • 11 篇 optimization
  • 10 篇 learning (artifi...
  • 9 篇 markov decision ...
  • 8 篇 q-learning
  • 7 篇 quality of servi...
  • 6 篇 heuristic algori...
  • 5 篇 convergence
  • 5 篇 mobile robot
  • 5 篇 resource allocat...
  • 5 篇 machine learning
  • 5 篇 dynamic scheduli...
  • 4 篇 internet of thin...
  • 4 篇 task analysis
  • 4 篇 automatic genera...
  • 4 篇 radio networks
  • 4 篇 jamming attack
  • 4 篇 cognitive radio ...

机构

  • 3 篇 natl taiwan univ...
  • 3 篇 mississippi stat...
  • 2 篇 hong kong polyte...
  • 2 篇 s china univ tec...
  • 2 篇 northeastern uni...
  • 2 篇 aristotle univ t...
  • 2 篇 nanjing tech uni...
  • 2 篇 northwestern pol...
  • 2 篇 univ sains malay...
  • 2 篇 nanyang technol ...
  • 2 篇 kun shan univ te...
  • 2 篇 mil acad tunisia...
  • 2 篇 nagoya univ dept...
  • 2 篇 hong kong polyte...
  • 2 篇 china commun inf...
  • 2 篇 jiangsu normal u...
  • 1 篇 nanjing univ pos...
  • 1 篇 beijing inst tec...
  • 1 篇 hainan inst zhej...
  • 1 篇 hangzhou dianzi ...

作者

  • 3 篇 scheers bart
  • 3 篇 stebel krzysztof
  • 3 篇 suandi shahrel a...
  • 3 篇 samma hussein
  • 3 篇 mohamad-saleh ju...
  • 3 篇 slimeni feten
  • 3 篇 chen jiann-liang
  • 3 篇 chtourou zied
  • 3 篇 le nir vincent
  • 2 篇 li ji
  • 2 篇 wang xingwei
  • 2 篇 xu yan
  • 2 篇 liu dexing
  • 2 篇 musial jakub
  • 2 篇 xu zhao
  • 2 篇 yang songpo
  • 2 篇 czeczot jacek
  • 2 篇 attia rabah
  • 2 篇 lu en
  • 2 篇 noori amin

语言

  • 192 篇 英文
  • 4 篇 其他
  • 2 篇 中文
检索条件"主题词=Q-Learning algorithm"
199 条 记 录,以下是161-170 订阅
排序:
Reinforcement learning algorithms in Global Path Planning for Mobile Robot
Reinforcement Learning Algorithms in Global Path Planning fo...
收藏 引用
International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)
作者: Sichkar, Valentyn N. ITMO Univ Dept Control Syst & Robot St Petersburg Russia
The paper is devoted to the research of two approaches for global path planning for mobile robots, based on q-learning and Sarsa algorithms. The study has been done with different adjustments of two algorithms that ma... 详细信息
来源: 评论
Cognitive Radio Jamming Mitigation using Markov Decision Process and Reinforcement learning
Cognitive Radio Jamming Mitigation using Markov Decision Pro...
收藏 引用
International Conference on Advanced Wireless Information and Communication Technologies (AWICT)
作者: Slimeni, Feten Scheers, Bart Chtourou, Zied Le Nir, Vincent Attia, Rabah Mil Acad Tunisia VRIT Lab Nabeul 8000 Tunisia Royal Mil Acad CISS Dept B-1000 Brussels Belgium EPT Univ Carthage SERCOM Lab Marsa 2078 Tunisia
The Cognitive radio technology is a promising solution to the imbalance between scarcity and under utilization of the spectrum. However, this technology is susceptible to both classical and advanced jamming attacks wh... 详细信息
来源: 评论
Dynamic Task Allocation for Formation Air-to-ground Attack
Dynamic Task Allocation for Formation Air-to-ground Attack
收藏 引用
6th International Conference on Advanced Computational Intelligence (ICACI)
作者: Zhang, An Guo, Fengjuan Northwestern Polytech Univ Fremont CA 94539 USA
In accordance with the allocation of random arriving tasks, queuing network is proposed and then utilized to establish combat model for air-to-ground attack of formation. With the methodology of Markov Decision Proces... 详细信息
来源: 评论
Enhancing Student Engagement in Smart Classrooms Using Reinforcement learning algorithms
Enhancing Student Engagement in Smart Classrooms Using Reinf...
收藏 引用
2024 Cross Strait Radio Science and Wireless Technology Conference
作者: Li, Yantao Wei, Ji Guangdong Univ Sci & Technol Guangzhou Peoples R China
This study aims to dynamically optimize the teaching strategy in smart classrooms by applying the q-learning reinforcement learning algorithm to improve students' classroom participation. This paper designs a comp... 详细信息
来源: 评论
Car-Following Safe Headway Strategy with Battery-Health Conscious: A Reinforcement learning Approach
Car-Following Safe Headway Strategy with Battery-Health Cons...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Jia, Xi Peng, Jun Liu, Yongjie Liu, Bo Wang, Pingping Lu, Yao Wen, Mengfei Huang, Zhiwu Cent South Univ Sch Automat Changsha Peoples R China Cent South Univ Sch Comp Sci & Engn Changsha Peoples R China Hunan Engn Lab Rail Vehicles Braking Technol Changsha Peoples R China Changsha Coll Presch Educ Changsha Peoples R China
This paper proposes an optimal car-following strategy for pure electric vehicles (EVs) with the aim of keeping an expected headway of the leader and reducing vehicle battery loss. In particular, a car-following system... 详细信息
来源: 评论
Multi-path Transmission Strategy for Deterministic Networks  13th
Multi-path Transmission Strategy for Deterministic Networks
收藏 引用
13th International Conference on Computer Engineering and Networks (CENet)
作者: Zheng, Fei Li, Kelin Zhou, Zou Hu, Yu Chen, Longjie Guilin Univ Elect Technol Minist Educ Key Lab Cognit Radio & Informat Proc Guilin 541004 Peoples R China
With the rapid growth of internet traffic, network congestion becomes more and more severe, which causes massive packets loss. The reliability and delay of data transmission needs to be guaranteed in real-time applica... 详细信息
来源: 评论
learning policies for single machine job dispatching
Learning policies for single machine job dispatching
收藏 引用
13th International Conference on Flexible Automation and Intelligent Manufacturing
作者: Wang, YC Usher, JM Kun Shan Univ Technol Dept Informat Management Tainan 710 Taiwan Mississippi State Univ Dept Ind Engn Mississippi State MS 39762 USA
Reinforcement learning (RL) has received some attention in recent years from a,gent-based researchers because it deals with the problem of how an autonomous agent can learn to select proper actions for achieving its g... 详细信息
来源: 评论
High-speed Train Timetabling Based on Reinforcement learning
High-speed Train Timetabling Based on Reinforcement Learning
收藏 引用
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
作者: Yang, Wanlu Jiang, Peng Song, Shiji Tsinghua Univ Dept Automat Beijing 100084 Peoples R China Tsinghua Univ BNRist Beijing 100084 Peoples R China
Chinese high-speed railway has developed rapidly in the more intelligent and automatic direction over the past few decades. In this paper, we consider the optimization problem of the train timetable for the high-speed... 详细信息
来源: 评论
An Analysis of Market Mechanism and Bidding Strategy for Power Balancing Market in Micro-grid
An Analysis of Market Mechanism and Bidding Strategy for Pow...
收藏 引用
China International Conference on Electricity Distribution (CICED)
作者: Jie, Bo Tsuji, Takao Yokohama Natl Univ Yokohama Kanagawa Japan
With the penetration of renewable energy sources such as photovoltaics or wind power, it becomes a more important issue to keep power system stable in terms of power balance with proper frequency. To this end, balanci... 详细信息
来源: 评论
Aero-engine life limit parts replacement policy optimization: Reinforcement learning method
Aero-engine life limit parts replacement policy optimization...
收藏 引用
International Symposium on Advanced Reliability and Maintenance Modeling (APARM)
作者: Lin, Lin Liu, Jie Liu, Jinshan Zhong, Shisheng Guo, Feng Harbin Inst Technol Sch Mechatron Engn Harbin Peoples R China China Aerosp Sci & Technol Corp Beijing Spacecrafts Beijing Peoples R China
An optimization method for aero-engine life limit parts (LLPs) replacement policy is proposed based on reinforcement learning method, aiming at optimizing the aero-engine LLPs replacement policy. In the proposed LLPs ... 详细信息
来源: 评论