咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 4 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 电气工程
  • 1 篇 理学
    • 1 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 4 篇 quadratic progra...
  • 2 篇 feature selectio...
  • 1 篇 partial least sq...
  • 1 篇 microarray datas...
  • 1 篇 nonlinear regres...
  • 1 篇 random forest
  • 1 篇 kernel methods
  • 1 篇 kernel fisher di...
  • 1 篇 support vector m...
  • 1 篇 electrocorticogr...
  • 1 篇 newton method
  • 1 篇 logistic regress...
  • 1 篇 partial least sq...
  • 1 篇 feature extracti...
  • 1 篇 neural network
  • 1 篇 signal decoding
  • 1 篇 minimum redundan...
  • 1 篇 k-nearest-neighb...
  • 1 篇 principal compon...

机构

  • 1 篇 skolkovo inst sc...
  • 1 篇 russian acad sci...
  • 1 篇 moscow inst phys...
  • 1 篇 univ autonoma ma...
  • 1 篇 univ calif san d...
  • 1 篇 laurentian unive...
  • 1 篇 moscow inst phys...
  • 1 篇 univ autonoma ma...

作者

  • 2 篇 strijov v. v.
  • 1 篇 rodriguez-lujan ...
  • 1 篇 santa cruz c.
  • 1 篇 jing sun
  • 1 篇 huerta r.
  • 1 篇 isachenko r. v
  • 1 篇 isachenko r. v.

语言

  • 4 篇 英文
检索条件"主题词=Quadratic Programming Feature Selection"
4 条 记 录,以下是1-10 订阅
排序:
quadratic programming feature selection for multicorrelated signal decoding with partial least squares
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 207卷
作者: Isachenko, R., V Strijov, V. V. Moscow Inst Phys & Technol 9 Inst Skiy Per Dolgoprudnyi 141700 Moscow Region Russia
This paper investigates dimensionality reduction problem for signal decoding. Its main application is brain-computer interface modeling. The challenge is high redundancy in the data description. Data combines time ser... 详细信息
来源: 评论
On the equivalence of Kernel Fisher discriminant analysis and Kernel quadratic programming feature selection
收藏 引用
PATTERN RECOGNITION LETTERS 2011年 第11期32卷 1567-1571页
作者: Rodriguez-Lujan, I. Santa Cruz, C. Huerta, R. Univ Autonoma Madrid Dept Ingn Informat E-28049 Madrid Spain Univ Autonoma Madrid Inst Ingn Conocimiento E-28049 Madrid Spain Univ Calif San Diego BioCircuits Inst La Jolla CA 92093 USA
We reformulate the quadratic programming feature selection (QPFS) method in a Kernel space to obtain a vector which maximizes the quadratic objective function of QPFS. We demonstrate that the vector obtained by Kernel... 详细信息
来源: 评论
quadratic programming Optimization with feature selection for Nonlinear Models
收藏 引用
LOBACHEVSKII JOURNAL OF MATHEMATICS 2018年 第9期39卷 1179-1187页
作者: Isachenko, R. V. Strijov, V. V. Moscow Inst Phys & Technol Inst Skii Per 9 Dolgoprudnyi 141700 Moscow Oblast Russia Skolkovo Inst Sci & Technol Ul Nobelya 3 Moscow 143026 Russia Russian Acad Sci AA Dorodnicyn Comp Ctr Ul Vavilova 40 Moscow 119333 Russia
The paper is devoted to the problem of constructing a predictive model in the high-dimensional feature space. The space is redundant, there is multicollinearity in the design matrix columns. In this case the model is ... 详细信息
来源: 评论
Improving Classification Performance of Microarray Analysis by feature selection and feature Extraction Methods
Improving Classification Performance of Microarray Analysis ...
收藏 引用
作者: Jing Sun Laurentian University
学位级别:硕士
In this study, we compared two feature extraction methods (PCA, PLS) and seven feature selection methods (mRMR and its variations, MaxRel, QPFS) on four different classifiers (SVM, RF, KNN, NN). We use ratio compariso... 详细信息
来源: 评论