咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 69 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 53 篇 工学
    • 41 篇 计算机科学与技术...
    • 16 篇 电气工程
    • 8 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 3 篇 石油与天然气工程
    • 3 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 船舶与海洋工程
    • 1 篇 网络空间安全
  • 34 篇 理学
    • 27 篇 物理学
    • 4 篇 数学
    • 3 篇 化学
    • 2 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 系统科学
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 法学

主题

  • 69 篇 quantum approxim...
  • 29 篇 quantum computin...
  • 13 篇 quantum optimiza...
  • 9 篇 optimization
  • 9 篇 quantum annealin...
  • 7 篇 quadratic uncons...
  • 6 篇 error mitigation
  • 5 篇 variational quan...
  • 5 篇 combinatorial op...
  • 4 篇 reinforcement le...
  • 4 篇 approximation al...
  • 4 篇 qubit
  • 3 篇 quantum control
  • 3 篇 quantum algorith...
  • 3 篇 policy gradient
  • 2 篇 circuit depth
  • 2 篇 max-cut
  • 2 篇 robust control
  • 2 篇 logic gates
  • 2 篇 qubo

机构

  • 4 篇 argonne natl lab...
  • 4 篇 univ calif berke...
  • 3 篇 argonne natl lab...
  • 3 篇 lawrence berkele...
  • 3 篇 univ delaware de...
  • 3 篇 tech univ munich...
  • 2 篇 univ tennessee d...
  • 2 篇 leiden univ liac...
  • 2 篇 univ calif berke...
  • 2 篇 argonne natl lab...
  • 2 篇 oak ridge natl l...
  • 2 篇 poznan univ tech...
  • 2 篇 univ chicago jam...
  • 2 篇 imperial coll lo...
  • 2 篇 clemson univ sch...
  • 2 篇 berkeley ctr qua...
  • 2 篇 menten ai inc pa...
  • 2 篇 univ tennessee d...
  • 2 篇 sc solut sunnyva...
  • 2 篇 univ calif berke...

作者

  • 8 篇 shaydulin ruslan
  • 5 篇 safro ilya
  • 5 篇 lin lin
  • 4 篇 alexeev yuri
  • 3 篇 galda alexey
  • 3 篇 rozycki rafal
  • 3 篇 wille robert
  • 2 篇 whaley k. birgit...
  • 2 篇 lotshaw phillip ...
  • 2 篇 qi han
  • 2 篇 waligora grzegor...
  • 2 篇 quetschlich nils
  • 2 篇 pecyna tomasz
  • 2 篇 back thomas
  • 2 篇 park jong hyuk
  • 2 篇 dunjko vedran
  • 2 篇 liu xiaoyuan
  • 2 篇 xu xiaotian
  • 2 篇 volpe deborah
  • 2 篇 wang yan

语言

  • 65 篇 英文
  • 4 篇 其他
检索条件"主题词=Quantum Approximate Optimization Algorithm"
69 条 记 录,以下是11-20 订阅
排序:
Evaluating quantum approximate optimization algorithm: A Case Study  10
Evaluating Quantum Approximate Optimization Algorithm: A Cas...
收藏 引用
10th International Green and Sustainable Computing Conference (IGSC)
作者: Shaydulin, Ruslan Alexeev, Yuri Clemson Univ Sch Comp Clemson SC 29634 USA Argonne Natl Lab Computat Sci Div 9700 S Cass Ave Argonne IL 60439 USA
quantum approximate optimization algorithm (QAOA) is one of the most promising quantum algorithms for the Noisy Intermediate-Scale quantum (NISQ) era. Quantifying the performance of QAOA in the near-term regime is of ... 详细信息
来源: 评论
A Reduced Complexity Method of Recursive quantum approximate optimization algorithm  14
A Reduced Complexity Method of Recursive Quantum Approximate...
收藏 引用
14th International Conference on Information and Communication Technology Convergence, ICTC 2023
作者: Seo, Youngjin Heo, Jun Korea University School of Electrical Engineering Seoul Korea Republic of
Among quantum algorithms, the quantum approximation optimization algorithm (QAOA) is an algorithm that finds approximate solutions. Recursive QAOA is proposed to overcome the limitation that QAOA has lower performance... 详细信息
来源: 评论
A quantum approximate optimization algorithm Based on Blockchain Heuristic Approach for Scalable and Secure Smart Logistics Systems
收藏 引用
HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES 2021年 11卷
作者: El Azzaoui, Abir Kim, Tae Woo Pan, Yi Park, Jong Hyuk Seoul Natl Univ Sci & Technol Dept Comp Sci & Engn Seoul South Korea Georgia State Univ Dept Comp Sci Atlanta GA 30303 USA
Smart logistics and supply chain play can determine the success or failure of any business. The cost, time, and carbon footprint are critical elements to be considered. Smart logistics solely consume 53% of the compan... 详细信息
来源: 评论
Lower bounds on circuit depth of the quantum approximate optimization algorithm
收藏 引用
quantum INFORMATION PROCESSING 2021年 第2期20卷 59-59页
作者: Herrman, Rebekah Ostrowski, James Humble, Travis S. Siopsis, George Univ Tennessee Dept Ind & Syst Engn Knoxville TN 37996 USA Oak Ridge Natl Lab Quantum Comp Inst Oak Ridge TN 37830 USA Univ Tennessee Dept Phys & Astron Knoxville TN 37996 USA
The quantum approximate optimization algorithm (QAOA) is a method of approximately solving combinatorial optimization problems. While QAOA is developed to solve a broad class of combinatorial optimization problems, it... 详细信息
来源: 评论
Improvement of quantum approximate optimization algorithm for Max-Cut Problems
收藏 引用
SENSORS 2022年 第1期22卷 244-244页
作者: Villalba-Diez, Javier Gonzalez-Marcos, Ana Ordieres-Mere, Joaquin B. Hsch Heilbronn Fak Management & Vertrieb Campus Schwabisch Hall D-74523 Schwabisch Hall Germany Univ Politecn Madrid Complex Syst Grp Ave Puerta de Hierro 2 Madrid 28040 Spain Univ La Rioja Dept Mech Engn San Jose de Calasanz 31 Logrono 26004 Spain Univ Politecn Madrid Escuela Tecn Super Ingn Ind ETSII Jose Gutierrez Abascal 2 Madrid 28006 Spain
The objective of this short letter is to study the optimal partitioning of value stream networks into two classes so that the number of connections between them is maximized. Such kind of problems are frequently found... 详细信息
来源: 评论
Unsupervised strategies for identifying optimal parameters in quantum approximate optimization algorithm
收藏 引用
EPJ quantum TECHNOLOGY 2022年 第1期9卷 11-11页
作者: Moussa, Charles Wang, Hao Back, Thomas Dunjko, Vedran Leiden Univ LIACS Leiden Netherlands
As combinatorial optimization is one of the main quantum computing applications, many methods based on parameterized quantum circuits are being developed. In general, a set of parameters are being tweaked to optimize ... 详细信息
来源: 评论
Classical symmetries and the quantum approximate optimization algorithm
收藏 引用
quantum INFORMATION PROCESSING 2021年 第11期20卷 359-359页
作者: Shaydulin, Ruslan Hadfield, Stuart Hogg, Tad Safro, Ilya Argonne Natl Lab Lemont IL 60439 USA NASA Quantum Artificial Intelligence Lab QuAIL Ames Res Ctr Moffett Field CA 94035 USA KBR Houston TX 77002 USA USRA Res Inst Adv Comp Sci RIACS Mountain View CA 94043 USA Univ Delaware Comp & Informat Sci Newark DE 19716 USA
We study the relationship between the quantum approximate optimization algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum s... 详细信息
来源: 评论
Robust Control optimization for quantum approximate optimization algorithms  21st
Robust Control Optimization for Quantum Approximate Optimiza...
收藏 引用
21st IFAC World Congress on Automatic Control - Meeting Societal Challenges
作者: Dong, Yulong Meng, Xiang Lin, Lin Kosut, Robert Whaley, K. Birgitta Berkeley Ctr Quantum Informat & Computat Berkeley CA 94720 USA Univ Calif Berkeley Dept Chem Berkeley CA 94720 USA Univ Calif Berkeley Dept Math Berkeley CA 94720 USA Lawrence Berkeley Natl Lab Computat Res Div Berkeley CA 94720 USA SC Solut Sunnyvale CA 94085 USA
quantum variational algorithms have garnered significant interest recently, due to their feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices. We examine the robustness of the... 详细信息
来源: 评论
quantum computing and quantum-inspired techniques for feature subset selection: a review
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2025年 第3期67卷 2019-2061页
作者: Mandal, Ashis Kumar Chakraborty, Basabi Univ Saskatchewan Dept Comp Sci Saskatoon SK S7N 5C9 Canada Hajee Mohammad Danesh Sci & Technol Univ Dept Comp Sci & Engn Dinajpur 5200 Bangladesh Madanapalle Inst Technol & Sci MITS Sch Comp Sci Madanapalle AP India Iwate Prefectural Univ Reg Res Cooperat Ctr Takizawa Iwate 0200693 Japan
Feature subset selection is essential for identifying relevant and non-redundant features, which enhances classification accuracy and simplifies machine learning models. Given the computational difficulties of determi... 详细信息
来源: 评论
QUBO Formulations and Characterization of Penalty Parameters for the Multi-Knapsack Problem
收藏 引用
IEEE ACCESS 2025年 13卷 47086-47098页
作者: Guney, Evren Ehrenthal, Joachim Hanne, Thomas MEF Univ Dept Ind Engn TR-34396 Istanbul Turkiye Univ Appl Sci & Arts Northwestern Switzerland FHNW Inst Business Informat Syst Sch Business CH-5210 Windisch Switzerland
The Multi-Knapsack Problem (MKP) is a fundamental challenge in operations research and combinatorial optimization. quantum computing introduces new possibilities for solving MKP using Quadratic Unconstrained Binary Op... 详细信息
来源: 评论