咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 物理学
  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 quantum graph ge...
  • 1 篇 molecular genera...
  • 1 篇 graph convolutio...
  • 1 篇 qnetgan

机构

  • 1 篇 univ toronto on ...
  • 1 篇 aspiring scholar...
  • 1 篇 univ calif berke...

作者

  • 1 篇 pendyala sriadit...
  • 1 篇 mcmahan larry
  • 1 篇 chau adelina
  • 1 篇 mekuria hasset
  • 1 篇 adwankar leena
  • 1 篇 cui max
  • 1 篇 chang linda

语言

  • 1 篇 英文
检索条件"主题词=Quantum Graph Generative Adversarial Network"
1 条 记 录,以下是1-10 订阅
排序:
Efficient and Optimized Small Organic Molecular graph Generation Pathway Using a quantum generative adversarial network  5
Efficient and Optimized Small Organic Molecular Graph Genera...
收藏 引用
2024 International Conference on quantum Computing and Engineering
作者: Cui, Max Chang, Linda Chau, Adelina Mekuria, Hasset Adwankar, Leena Pendyala, Sriaditya McMahan, Larry Univ Toronto Toronto ON M5S 1A1 Canada Aspiring Scholars Directed Res Program Fremont CA USA Univ Calif Berkeley Berkeley CA 94720 USA
Contemporary drug discovery and development processes require billions of dollars and lengthy amounts of time, which is why researchers are utilizing computational chemistry methods like machine learning to speed up m... 详细信息
来源: 评论