咨询与建议

限定检索结果

文献类型

  • 38 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 70 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 54 篇 工学
    • 42 篇 计算机科学与技术...
    • 16 篇 电气工程
    • 8 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 3 篇 石油与天然气工程
    • 3 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 网络空间安全
  • 34 篇 理学
    • 27 篇 物理学
    • 4 篇 数学
    • 3 篇 化学
    • 2 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 系统科学
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 70 篇 quantum approxim...
  • 29 篇 quantum computin...
  • 13 篇 quantum optimiza...
  • 9 篇 optimization
  • 9 篇 quantum annealin...
  • 7 篇 quadratic uncons...
  • 6 篇 variational quan...
  • 6 篇 error mitigation
  • 5 篇 combinatorial op...
  • 4 篇 reinforcement le...
  • 4 篇 approximation al...
  • 4 篇 qubit
  • 3 篇 quantum control
  • 3 篇 quantum algorith...
  • 3 篇 policy gradient
  • 2 篇 circuit depth
  • 2 篇 max-cut
  • 2 篇 robust control
  • 2 篇 logic gates
  • 2 篇 qubo

机构

  • 4 篇 argonne natl lab...
  • 4 篇 univ calif berke...
  • 3 篇 argonne natl lab...
  • 3 篇 lawrence berkele...
  • 3 篇 univ delaware de...
  • 3 篇 tech univ munich...
  • 2 篇 univ tennessee d...
  • 2 篇 leiden univ liac...
  • 2 篇 univ calif berke...
  • 2 篇 argonne natl lab...
  • 2 篇 oak ridge natl l...
  • 2 篇 poznan univ tech...
  • 2 篇 univ chicago jam...
  • 2 篇 imperial coll lo...
  • 2 篇 clemson univ sch...
  • 2 篇 berkeley ctr qua...
  • 2 篇 menten ai inc pa...
  • 2 篇 univ tennessee d...
  • 2 篇 sc solut sunnyva...
  • 2 篇 univ calif berke...

作者

  • 8 篇 shaydulin ruslan
  • 5 篇 safro ilya
  • 5 篇 lin lin
  • 4 篇 alexeev yuri
  • 3 篇 galda alexey
  • 3 篇 rozycki rafal
  • 3 篇 wille robert
  • 2 篇 whaley k. birgit...
  • 2 篇 lotshaw phillip ...
  • 2 篇 qi han
  • 2 篇 waligora grzegor...
  • 2 篇 quetschlich nils
  • 2 篇 pecyna tomasz
  • 2 篇 back thomas
  • 2 篇 park jong hyuk
  • 2 篇 dunjko vedran
  • 2 篇 liu xiaoyuan
  • 2 篇 xu xiaotian
  • 2 篇 volpe deborah
  • 2 篇 wang yan

语言

  • 66 篇 英文
  • 4 篇 其他
检索条件"主题词=Quantum approximate optimization algorithm"
70 条 记 录,以下是1-10 订阅
排序:
quantum approximate optimization algorithm applied to multi-objective routing for large scale 6G networks
收藏 引用
Computer Networks 2025年 267卷
作者: Bouchmal, Oumayma Cimoli, Bruno Stabile, Ripalta Vegas Olmos, Juan Jose Tafur Monroy, Idelfonso Department of Electrical Engineering Eindhoven University of Technology Eindhoven Netherlands Software Architecture NVIDIA Corporation Yokneam Israel
A multi-objective optimization problem involves optimizing two or more conflicting objectives simultaneously. This type of problem arises in many scientific and industrial areas and it is classified as NP-Hard. Networ... 详细信息
来源: 评论
quantum approximate optimization algorithm for Bayesian network structure learning
收藏 引用
quantum INFORMATION PROCESSING 2022年 第1期22卷 1-28页
作者: Soloviev, Vicente P. Bielza, Concha Larranaga, Pedro Univ Politecn Madrid Computat Intelligence Grp Campus Montegancedo Madrid Spain
Bayesian network structure learning is an NP-hard problem that has been faced by a number of traditional approaches in recent decades. Currently, quantum technologies offer a wide range of advantages that can be explo... 详细信息
来源: 评论
quantum approximate optimization algorithm with Sparsified Phase Operator  3
Quantum Approximate Optimization Algorithm with Sparsified P...
收藏 引用
3rd IEEE International Conference on quantum Computing and Engineering (QCE)
作者: Liu, Xiaoyuan Shaydulin, Ruslan Safro, Ilya Fujitsu Res Amer Inc Sunnyvale CA 94085 USA Univ Delaware Dept Comp & Informat Sci Newark DE 19716 USA Argonne Natl Lab Math & Comp Sci Div Lemont IL USA JPMorgan Chase Future Lab Appl Res & Engn New York NY USA
The quantum approximate optimization algorithm (QAOA) is a promising candidate algorithm for demonstrating quantum advantage in optimization using near-term quantum computers. However, QAOA has high requirements on ga... 详细信息
来源: 评论
quantum approximate optimization algorithm for PD-NOMA User Pairing
Quantum Approximate Optimization Algorithm for PD-NOMA User ...
收藏 引用
IEEE International Conference on Communications (IEEE ICC)
作者: Xiang, Qiwei Kho, Yau Hee Seah, Winston K. G. Tian, Yue Fang, Rui Huang, Peng Sichuan Agr Univ Coll Mech & Elect Engn Yaan Peoples R China Victoria Univ Wellington Sch Engn & Comp Sci Wellington 6140 New Zealand Xiamen Univ Technol Fujian Key Lab Commun Network & Informat Proc Xiamen 361024 Peoples R China
This work proposes the utilization of the quantum approximate optimization algorithm (QAOA) for user pairing in non-orthogonal multiple access (NOMA). By exploiting quantum concepts such as the quantum adiabatic theor... 详细信息
来源: 评论
Lower bounds on circuit depth of the quantum approximate optimization algorithm
收藏 引用
quantum INFORMATION PROCESSING 2021年 第2期20卷 1-17页
作者: Herrman, Rebekah Ostrowski, James Humble, Travis S. Siopsis, George Univ Tennessee Dept Ind & Syst Engn Knoxville TN 37996 USA Oak Ridge Natl Lab Quantum Comp Inst Oak Ridge TN 37830 USA Univ Tennessee Dept Phys & Astron Knoxville TN 37996 USA
The quantum approximate optimization algorithm (QAOA) is a method of approximately solving combinatorial optimization problems. While QAOA is developed to solve a broad class of combinatorial optimization problems, it... 详细信息
来源: 评论
Unsupervised strategies for identifying optimal parameters in quantum approximate optimization algorithm
收藏 引用
EPJ quantum TECHNOLOGY 2022年 第1期9卷 1-19页
作者: Moussa, Charles Wang, Hao Back, Thomas Dunjko, Vedran Leiden Univ LIACS Leiden Netherlands
As combinatorial optimization is one of the main quantum computing applications, many methods based on parameterized quantum circuits are being developed. In general, a set of parameters are being tweaked to optimize ... 详细信息
来源: 评论
A quantum approximate optimization algorithm for solving Hamilton path problem
收藏 引用
JOURNAL OF SUPERCOMPUTING 2022年 第13期78卷 15381-15403页
作者: Gong, Changqing Wang, Ting He, Wanying Qi, Han Shenyang Aerosp Univ Sch Comp Sci Daoyi Nan St Shenyang 110136 Liaoning Peoples R China
In recent years, combinatorial optimization has been widely studied. The existing optimization solutions are prone to fall into local optimal solutions and have a lower probability of obtaining global optimal solution... 详细信息
来源: 评论
Classical symmetries and the quantum approximate optimization algorithm
收藏 引用
quantum INFORMATION PROCESSING 2021年 第11期20卷 1-28页
作者: Shaydulin, Ruslan Hadfield, Stuart Hogg, Tad Safro, Ilya Argonne Natl Lab Lemont IL 60439 USA NASA Quantum Artificial Intelligence Lab QuAIL Ames Res Ctr Moffett Field CA 94035 USA KBR Houston TX 77002 USA USRA Res Inst Adv Comp Sci RIACS Mountain View CA 94043 USA Univ Delaware Comp & Informat Sci Newark DE 19716 USA
We study the relationship between the quantum approximate optimization algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum s... 详细信息
来源: 评论
quantum Linear System Solver Based on Time-optimal Adiabatic quantum Computing and quantum approximate optimization algorithm
收藏 引用
ACM TRANSACTIONS ON quantum COMPUTING 2022年 第2期3卷 1–28页
作者: An, Dong Lin, Lin Univ Calif Berkeley Dept Math Berkeley CA 94720 USA Univ Calif Berkeley Challenge Inst Quantum Computat Berkeley CA 94720 USA Lawrence Berkeley Natl Lab Computat Res Div Berkeley CA 94720 USA
We demonstrate that with an optimally tuned scheduling function, adiabatic quantum computing (AQC) can readily solve a quantum linear system problem (QLSP) with O(kappa poly(log(kappa/epsilon))) runtime, where kappa i... 详细信息
来源: 评论
Graph representation learning for parameter transferability in quantum approximate optimization algorithm
收藏 引用
quantum MACHINE INTELLIGENCE 2024年 第2期6卷 1-16页
作者: Falla, Jose Langfitt, Quinn Alexeev, Yuri Safro, Ilya Univ Delaware Dept Phys & Astron Newark DE 19716 USA Univ Delaware Dept Comp & Informat Sci Newark DE 19716 USA Argonne Natl Lab Computat Sci Div Lemont IL 60439 USA
The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. Optimal QAOA parameter concentration e... 详细信息
来源: 评论