咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 理学
    • 2 篇 物理学

主题

  • 2 篇 quantum machine ...
  • 2 篇 quantum variatio...
  • 1 篇 quantum computin...
  • 1 篇 quantum chemistr...
  • 1 篇 quantum support ...
  • 1 篇 kernel
  • 1 篇 classification
  • 1 篇 gradient

机构

  • 1 篇 hassan ii univ c...
  • 1 篇 infn sez genova ...
  • 1 篇 univ witwatersra...
  • 1 篇 univ genoa dipar...
  • 1 篇 indian inst sci ...
  • 1 篇 zaiku grp ltd li...
  • 1 篇 genoa univ dept ...
  • 1 篇 eth inst theoret...

作者

  • 1 篇 innan n.
  • 1 篇 panda b.
  • 1 篇 solinas p.
  • 1 篇 melegari d.
  • 1 篇 minuto g.
  • 1 篇 khan m. a. z.
  • 1 篇 caletti s.
  • 1 篇 bennai m.

语言

  • 2 篇 英文
检索条件"主题词=Quantum variational algorithm"
2 条 记 录,以下是1-10 订阅
排序:
A novel approach to reduce derivative costs in variational quantum algorithms
收藏 引用
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 2025年 第18期58卷 185301-185301页
作者: Minuto, G. Melegari, D. Caletti, S. Solinas, P. Genoa Univ Dept Informat Bioengn Robot & Syst Polytech Sch Genoa Italy INFN Sez Genova via Dodecaneso 33 I-16146 Genoa Italy Univ Genoa Dipartimento Fis via Dodecaneso 33 I-16146 Genoa Italy ETH Inst Theoret Phys CH-8093 Zurich Switzerland
We present a detailed numerical study of an alternative approach, named quantum non-demolition measurement (QNDM) (Solinas et al 2023 Eur. Phys. J. D 77 76), to efficiently estimate the gradients or the Hessians of a ... 详细信息
来源: 评论
Enhancing quantum support vector machines through variational kernel training
收藏 引用
quantum INFORMATION PROCESSING 2023年 第10期22卷 374-374页
作者: Innan, N. Khan, M. A. Z. Panda, B. Bennai, M. Hassan II Univ Casablanca Fac Sci Ben Msick Quantum Phys & Magnetism Team LPMC Casablanca Morocco Zaiku Grp Ltd Liverpool England Univ Witwatersrand Sch Comp Sci & Appl Math Robot Autonomous Intelligence Learning Lab RAIL 1 Jan Smuts Ave ZA-2000 Johannesburg Gauteng South Africa Indian Inst Sci Educ & Res IISER Berhampur Odisha India
We introduce a new model in quantum machine learning (QML) that combines the strengths of existing quantum kernel SVM (QK-SVM) and quantum variational SVM (QV-SVM) methods. Our proposed model, quantum variational kern... 详细信息
来源: 评论