咨询与建议

限定检索结果

文献类型

  • 9 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 9 篇 计算机科学与技术...
    • 7 篇 软件工程
    • 3 篇 电气工程
    • 2 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 2 篇 交通运输工程
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
  • 1 篇 理学
    • 1 篇 地球物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 13 篇 radar object det...
  • 6 篇 autonomous drivi...
  • 3 篇 radar imaging
  • 2 篇 transformer
  • 2 篇 radar
  • 2 篇 automotive radar
  • 2 篇 radio frequency
  • 2 篇 radar detection
  • 1 篇 object detection
  • 1 篇 multi-model fusi...
  • 1 篇 ensemble learnin...
  • 1 篇 computer vision ...
  • 1 篇 cross-modal supe...
  • 1 篇 rod2021 challeng...
  • 1 篇 three-dimensiona...
  • 1 篇 deep cnn
  • 1 篇 m-net
  • 1 篇 doppler effect
  • 1 篇 perception
  • 1 篇 neural networks

机构

  • 2 篇 silkwave holding...
  • 2 篇 robert bosch gmb...
  • 2 篇 leibniz univ han...
  • 1 篇 finnish ctr arti...
  • 1 篇 baidu inc people...
  • 1 篇 kings coll londo...
  • 1 篇 hangzhou dianzi ...
  • 1 篇 guangxi univ peo...
  • 1 篇 natl key lab par...
  • 1 篇 chongqing univ s...
  • 1 篇 shanghai wellpla...
  • 1 篇 tech univ carolo...
  • 1 篇 zhejiang univ pe...
  • 1 篇 elect & telecomm...
  • 1 篇 univ sci & techn...
  • 1 篇 univ toulouse is...
  • 1 篇 chinese univ hon...
  • 1 篇 aalto univ dept ...
  • 1 篇 univ alabama dep...
  • 1 篇 paii labs palo a...

作者

  • 2 篇 jiang zhongyu
  • 2 篇 hwang jenq-neng
  • 2 篇 koehler daniel
  • 2 篇 blume holger
  • 2 篇 liu hui
  • 2 篇 wang yizhou
  • 2 篇 meinl frank
  • 1 篇 gu renshu
  • 1 篇 wu teresa
  • 1 篇 niu xuetong
  • 1 篇 wang gaoang
  • 1 篇 sun guohao
  • 1 篇 qian junhui
  • 1 篇 paya-vaya guille...
  • 1 篇 vanrullen rufin
  • 1 篇 zheng ruxin
  • 1 篇 munir farzeen
  • 1 篇 sun hao
  • 1 篇 liu yuyu
  • 1 篇 sun qiang

语言

  • 13 篇 英文
检索条件"主题词=Radar Object Detection"
13 条 记 录,以下是1-10 订阅
排序:
radar object detection on a Vector Processor Using Sparse Convolutional Neural Networks  24th
Radar Object Detection on a Vector Processor Using Sparse Co...
收藏 引用
24th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
作者: Koehler, Daniel Meinl, Frank Blume, Holger Leibniz Univ Hannover Inst Microelect Syst Hannover Germany Robert Bosch GmbH Leonberg Cross Domain Comp Solut Leonberg Germany
Autonomous driving systems require performant and reliable perception, though they only possess limited computational resources, which places a high priority on the efficiency of the underlying algorithms. radar senso... 详细信息
来源: 评论
radar object detection Using Data Merging, Enhancement and Fusion  21
Radar Object Detection Using Data Merging, Enhancement and F...
收藏 引用
11th International Conference on Multimedia Retrieval (ICMR)
作者: Yu, Jun Hao, Xinlong Gao, Xinjian Sun, Qiang Liu, Yuyu Chang, Peng Zhang, Zhong Gao, Fang Shuang, Feng Univ Sci & Technol China Hefei Peoples R China Ping Technol Co Ltd Shenzhen Peoples R China PAII Labs Palo Alto CA USA Hefei ZhanDa Intelligence Technol Co Ltd Hefei Peoples R China Guangxi Univ Nanning Peoples R China
Compared to visible images, radar images are generally considered to be an active and robust solution, even in adverse driving situations, for object detection. However, the accuracy of radar object detection (ROD) is... 详细信息
来源: 评论
TC-radar: Transformer-CNN Hybrid Network for Millimeter-Wave radar object detection
收藏 引用
REMOTE SENSING 2024年 第16期16卷 2881页
作者: Jia, Fengde Li, Chenyang Bi, Siyi Qian, Junhui Wei, Leizhe Sun, Guohao Donghua Univ Sch Informat Sci & Technol Shanghai 201620 Peoples R China Donghua Univ Coll Text Shanghai Frontier Sci Res Ctr Modern Text Shanghai 201620 Peoples R China Chongqing Univ Sch Microelect & Commun Engn Chongqing 400044 Peoples R China Shanghai Wellplan Technol Co Ltd Shanghai 200030 Peoples R China Sichuan Univ Sch Aeronaut & Astronaut Chengdu 610207 Peoples R China Sichuan Prov Key Lab Robot Satellites Chengdu 610207 Peoples R China
In smart transportation, assisted driving relies on data integration from various sensors, notably LiDAR and cameras. However, their optical performance can degrade under adverse weather conditions, potentially compro... 详细信息
来源: 评论
RODNet: A Real-Time radar object detection Network Cross-Supervised by Camera-radar Fused object 3D Localization
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2021年 第4期15卷 954-967页
作者: Wang, Yizhou Jiang, Zhongyu Li, Yudong Hwang, Jenq-Neng Xing, Guanbin Liu, Hui Univ Washington Dept Elect & Comp Engn Seattle WA 98105 USA Silkwave Holdings Ltd Hong Kong Peoples R China
Various autonomous or assisted driving strategies have been facilitated through the accurate and reliable perception of the environment around a vehicle. Among the commonly used sensors, radar has usually been conside... 详细信息
来源: 评论
RadSimReal: Bridging the Gap Between Synthetic and Real Data in radar object detection With Simulation
RadSimReal: Bridging the Gap Between Synthetic and Real Data...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Bialer, Oded Haitman, Yuval Gen Motors Tech Ctr Israel Herzliyya Israel
object detection in radar imagery with neural networks shows great potential for improving autonomous driving. However, obtaining annotated datasets from real radar images, crucial for training these networks, is chal... 详细信息
来源: 评论
ROD2021 Challenge: A Summary for radar object detection Challenge for Autonomous Driving Applications  21
ROD2021 Challenge: A Summary for Radar Object Detection Chal...
收藏 引用
11th International Conference on Multimedia Retrieval (ICMR)
作者: Wang, Yizhou Hwang, Jenq-Neng Wang, Gaoang Liu, Hui Kim, Kwang-Ju Hsu, Hung-Min Cai, Jiarui Zhang, Haotian Jiang, Zhongyu Gu, Renshu Univ Washington Seattle WA 98195 USA Zhejiang Univ Hangzhou Zhejiang Peoples R China Silkwave Holdings Ltd Hong Kong Peoples R China Elect & Telecommun Res Inst ETRI Daegu South Korea Hangzhou Dianzi Univ Hangzhou Zhejiang Peoples R China
The radar object detection 2021 (ROD2021) Challenge, held in the ACM International Conference on Multimedia Retrieval (ICMR) 2021, has been introduced to detect and classify objects purely using an FMCW radar for auto... 详细信息
来源: 评论
Squeeze-and-Excitation network-Based radar object detection With Weighted Location Fusion  21
Squeeze-and-Excitation network-Based Radar Object Detection ...
收藏 引用
11th International Conference on Multimedia Retrieval (ICMR)
作者: Sun, Pengliang Niu, Xuetong Sun, Pengfei Xu, Kele Chinese Univ Hong Kong Hong Kong Peoples R China Kings Coll London London England Univ Zurich Inst Neuroinformat Zurich Switzerland Swiss Fed Inst Technol Zurich Switzerland Natl Key Lab Parallel & Distributed Proc Changsha Peoples R China
radar object detection refers to identify objects from radar data, and the topic has received increasing interest during the last years, due to the appealing property of radar imaging and evident applications. However... 详细信息
来源: 评论
DANet: Dimension Apart Network for radar object detection  21
DANet: Dimension Apart Network for Radar Object Detection
收藏 引用
11th International Conference on Multimedia Retrieval (ICMR)
作者: Ju, Bo Yang, Wei Jia, Jinrang Ye, Xiaoqing Chen, Qu Tan, Xiao Sun, Hao Shi, Yifeng Ding, Errui Baidu Inc Beijing Peoples R China
In this paper, we propose a dimension apart network (DANet) for radar object detection task. A Dimension Apart Module (DAM) is first designed to be lightweight and capable of extracting temporalspatial information fro... 详细信息
来源: 评论
Pre-Training For mmWave radar object detection Through Masked Image Modeling  2
Pre-Training For mmWave Radar Object Detection Through Maske...
收藏 引用
2nd International Conference on Image Processing, Computer Vision and Machine Learning, ICICML 2023
作者: Zhuang, Long Jiang, Tiezhen School of Integrated Circuits Anhui University Hefei China
Millimeter-wave (mmWave) radar object detection (ROD) is an indispensable technique in autonomous driving technology because of its ability to maintain stability in complex environments. Deep learning (DL) techniques ... 详细信息
来源: 评论
A Recurrent CNN for Online object detection on Raw radar Frames
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第10期25卷 13432-13441页
作者: Decourt, Colin VanRullen, Rufin Salle, Didier Oberlin, Thomas Univ Toulouse Artificial & Nat Intelligence Toulouse Inst F-31400 Toulouse France Univ Toulouse ISAE SUPAERO F-31400 Toulouse France CerCO CNRS UMR5549 F-31052 Toulouse France NXP Semicond F-31100 Toulouse France
Automotive radar sensors provide valuable information for advanced driving assistance systems (ADAS). radars can reliably estimate the distance to an object and the relative velocity, regardless of weather and light c... 详细信息
来源: 评论