咨询与建议

限定检索结果

文献类型

  • 12 篇 会议
  • 11 篇 期刊文献

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 23 篇 工学
    • 17 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 4 篇 控制科学与工程
    • 3 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 化学工程与技术
    • 1 篇 软件工程
    • 1 篇 网络空间安全
  • 5 篇 理学
    • 2 篇 数学
    • 2 篇 系统科学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 23 篇 random vector fu...
  • 4 篇 broad learning s...
  • 4 篇 single layer fee...
  • 3 篇 deep learning
  • 3 篇 neural networks
  • 2 篇 support vector r...
  • 2 篇 ensemble learnin...
  • 2 篇 extreme learning...
  • 2 篇 hyperdimensional...
  • 2 篇 load demand time...
  • 2 篇 incremental lear...
  • 2 篇 extreme learning...
  • 1 篇 learning using p...
  • 1 篇 uncertainty quan...
  • 1 篇 threshold functi...
  • 1 篇 randomly connect...
  • 1 篇 lesions
  • 1 篇 learning vector ...
  • 1 篇 learning systems
  • 1 篇 bayesian regress...

机构

  • 3 篇 dalian maritime ...
  • 2 篇 res inst sweden ...
  • 2 篇 nanyang technol ...
  • 2 篇 univ calif berke...
  • 2 篇 chinese acad sci...
  • 1 篇 king fahd univ p...
  • 1 篇 univ southern qu...
  • 1 篇 univ balearic is...
  • 1 篇 manipal acad hig...
  • 1 篇 astar inst infoc...
  • 1 篇 tohoku univ grad...
  • 1 篇 state key labora...
  • 1 篇 czech tech univ ...
  • 1 篇 univ basque coun...
  • 1 篇 southwest univ s...
  • 1 篇 department of en...
  • 1 篇 polytechnique sc...
  • 1 篇 univ malaya univ...
  • 1 篇 univ genoa dept ...
  • 1 篇 univ cambridge d...

作者

  • 3 篇 chen c. l. phili...
  • 3 篇 liu zhulin
  • 2 篇 suganthan p. n.
  • 2 篇 kleyko denis
  • 1 篇 alazab mamoun
  • 1 篇 de lima sidney m...
  • 1 篇 wong cheryl sze ...
  • 1 篇 li wanpeng
  • 1 篇 menon girish r.
  • 1 篇 gao jinzhu
  • 1 篇 homma noriyasu
  • 1 篇 p. n. suganthan
  • 1 篇 aman raja rizal ...
  • 1 篇 savitha ramasamy
  • 1 篇 wei dai
  • 1 篇 hammoudeh mohamm...
  • 1 篇 manibardo eric l...
  • 1 篇 gastaldo paolo
  • 1 篇 hao yiwu
  • 1 篇 gudigar anjan

语言

  • 23 篇 英文
检索条件"主题词=Random Vector Functional Link Networks"
23 条 记 录,以下是11-20 订阅
排序:
An approximate randomization-based neural network with dedicated digital architecture for energy-constrained devices
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2023年 第9期35卷 6753-6766页
作者: Ragusa, Edoardo Gianoglio, Christian Zunino, Rodolfo Gastaldo, Paolo Univ Genoa Dept Elect Elect Telecommunicat Engn & Naval Architecture DITEN Genoa Italy
Variable energy constraints affect the implementations of neural networks on battery-operated embedded systems. This paper describes a learning algorithm for randomization-based neural networks with hard-limit activat... 详细信息
来源: 评论
Letter on Convergence of In-Parameter-Linear Nonlinear Neural Architectures With Gradient Learnings
收藏 引用
IEEE TRANSACTIONS ON NEURAL networks AND LEARNING SYSTEMS 2023年 第8期34卷 5189-5192页
作者: Bukovsky, Ivo Dohnal, Gejza Benes, Peter M. Ichiji, Kei Homma, Noriyasu Univ South Bohemia Ceske Budejovice Dept Comp Sci Fac Sci Ceske Budejovice 37005 Czech Republic Czech Tech Univ Fac Mech Engn Dept Mech Biomechan & Mechatron Prague 16607 Czech Republic Czech Tech Univ Dept Tech Math Fac Mech Engn Prague 16607 Czech Republic Siemens Mobil Sro Dept Rail Automat Prague 18200 Czech Republic Tohoku Univ Grad Sch Med Dept Radiol Imaging & Informat Sendai Miyagi 9808575 Japan
This letter summarizes and proves the concept of bounded-input bounded-state (BIBS) stability for weight convergence of a broad family of in-parameter-linear nonlinear neural architectures (IPLNAs) as it generally app... 详细信息
来源: 评论
Electricity Load Demand Time Series Forecasting with Empirical Mode Decomposition based random vector functional link Network
Electricity Load Demand Time Series Forecasting with Empiric...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics
作者: Xueheng Qiu P. N. Suganthan Gehan A. J. Amaratunga School of Electrical and Electronic Engineering Nanyang Technological Univeristy Singapore Department of Engineering University of Cambridge UK
Short-term electricity load demand forecasting is a critical process in the management of modern power system. An ensemble method composed of Empirical Mode Decomposition (EMD) and random vector functional link networ... 详细信息
来源: 评论
Gauss–Seidel Extreme Learning Machines
收藏 引用
SN Computer Science 2020年 第4期1卷 1-28页
作者: de Freitas, Rafaela C. Ferreira, Janderson de Lima, Sidney M. L. Fernandes, Bruno José T. Bezerra, Byron L. D. dos Santos, Wellington P. Polytechnique School of the University of Pernambuco Recife Brazil Federal University of Pernambuco Recife Brazil
Extreme learning machines (ELM) were created to simplify the training phase of single-layer feedforward neural networks, where the input weights are randomly set and the only parameter is the number of neurons in the ... 详细信息
来源: 评论
Generalized Learning vector Quantization for Classification in randomized Neural networks and Hyperdimensional Computing
Generalized Learning Vector Quantization for Classification ...
收藏 引用
International Joint Conference on Neural networks (IJCNN)
作者: Diao, Cameron Kleyko, Denis Rabaey, Jan M. Olshausen, Bruno A. Rice Univ Dept Comp Sci Houston TX 77005 USA Univ Calif Berkeley Berkeley CA USA Res Inst Sweden Kista Sweden Univ Calif Berkeley Berkeley Wireless Res Ctr Berkeley CA USA Univ Calif Berkeley Redwood Ctr Theoret Neurosci Berkeley CA USA
Machine learning algorithms deployed on edge devices must meet certain resource constraints and efficiency requirements. random vector functional link (RVFL) networks are favored for such applications due to their sim... 详细信息
来源: 评论
Hyperdimensional Computing for Efficient Distributed Classification with randomized Neural networks
Hyperdimensional Computing for Efficient Distributed Classif...
收藏 引用
International Joint Conference on Neural networks (IJCNN)
作者: Rosato, Antonello Panella, Massimo Kleyko, Denis Univ Roma La Sapienza Diet Dept Rome Italy Univ Calif Berkeley Berkeley CA USA Res Inst Sweden Kista Sweden
In the supervised learning domain, considering the recent prevalence of algorithms with high computational cost, the attention is steering towards simpler, lighter, and less computationally extensive training and infe... 详细信息
来源: 评论
Broad Learning System: structural extensions on single-layer and multi-layer neural networks
Broad Learning System: structural extensions on single-layer...
收藏 引用
International Conference on Security, Pattern Analysis, and Cybernetics (ICSPAC)
作者: Liu, Zhulin Chen, C. L. Philip Univ Macau Fac Sci & Technol Dept Comp & Informat Sci Macau Peoples R China Dalian Maritime Univ Dalian Peoples R China Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing Peoples R China
Broad Learning System proposed recently Ill demonstrates efficient and effective learning capability. Moreover, fast incremental learning algorithms are developed in broad expansions without an entire retraining of th... 详细信息
来源: 评论
Impact of Probability Distribution Selection on RVFL Performance  1
收藏 引用
2nd International Conference on Smart Computing and Communication (SmartCom)
作者: Cao, Weipeng Gao, Jinzhu Ming, Zhong Cai, Shubin Zheng, Hua Shenzhen Univ Shenzhen 518060 Peoples R China Univ Pacific Stockton CA 95211 USA
The initialization of input weights and hidden biases plays an important role in random vector functional link networks (RVFL). Although some optimization algorithms for initialization have been proposed in recent yea... 详细信息
来源: 评论
Broad Learning System: Feature extraction based on K-means clustering algorithm
Broad Learning System: Feature extraction based on K-means c...
收藏 引用
4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS)
作者: Liu, Zhulin Zhou, Jin Chen, C. L. Philip Univ Macau Dept Comp & Informat Sci Fac Sci & Technol Macau Peoples R China Dalian Maritime Univ Dalian Peoples R China Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing Peoples R China Univ Jinan Shandong Prov Key Lab Network Based Intelligent C Jinan Shandong Peoples R China
Broad Learning System Hi proposed recently demonstrates efficient and effective learning capability. This model is also proved to be suitable for incremental learning algorithms by taking the advantages of random vect... 详细信息
来源: 评论
Broad Learning System: a new learning paradigm and system without going deep  32
Broad Learning System: a new learning paradigm and system wi...
收藏 引用
32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC)
作者: Chen, C. L. Philip Liu, Zhulin Univ Macau Fac Sci & Technol Macau 99999 Peoples R China Dalian Maritime Univ Dalian Liaoning Peoples R China
This paper introduces a Broad Learning System that gives a new paradigm and learning system without the need of deep architecture. In deep structure and learning, the abundant connecting parameters in filters and laye... 详细信息
来源: 评论