咨询与建议

限定检索结果

文献类型

  • 35 篇 期刊文献
  • 7 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 44 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 理学
    • 26 篇 数学
    • 4 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 生物学
  • 23 篇 工学
    • 16 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 3 篇 软件工程
    • 2 篇 控制科学与工程
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 44 篇 randomized numer...
  • 6 篇 low-rank approxi...
  • 6 篇 sketching
  • 5 篇 least squares
  • 4 篇 approximation al...
  • 3 篇 leverage scores
  • 3 篇 dimension reduct...
  • 3 篇 matrix decomposi...
  • 3 篇 rank-revealing f...
  • 2 篇 regression
  • 2 篇 image recovery
  • 2 篇 rank-revealing m...
  • 2 篇 randomized svd
  • 2 篇 coded computing
  • 2 篇 signal processin...
  • 2 篇 nonlinear dynami...
  • 2 篇 trace estimation
  • 2 篇 mean squared err...
  • 2 篇 asymptotic mean ...
  • 2 篇 nonlinear model ...

机构

  • 3 篇 univ calif berke...
  • 2 篇 univ michigan an...
  • 2 篇 int comp sci ins...
  • 2 篇 tech univ munich...
  • 2 篇 univ colorado bo...
  • 2 篇 ecole polytech f...
  • 2 篇 vrije univ amste...
  • 2 篇 queen mary univ ...
  • 2 篇 univ texas austi...
  • 1 篇 inst math phys &...
  • 1 篇 bmw grp res & in...
  • 1 篇 univ calif san d...
  • 1 篇 univ calif berke...
  • 1 篇 stanford univ in...
  • 1 篇 international co...
  • 1 篇 department of fa...
  • 1 篇 univ calif davis...
  • 1 篇 tel aviv univ sc...
  • 1 篇 georgia inst tec...
  • 1 篇 tel aviv univ sc...

作者

  • 4 篇 avron haim
  • 4 篇 mahoney michael ...
  • 3 篇 kressner daniel
  • 3 篇 chen jie
  • 2 篇 duddeck f.
  • 2 篇 charalambides ne...
  • 2 篇 dong yuxin
  • 2 篇 michael w. mahon...
  • 2 篇 song l.
  • 2 篇 pilanci mert
  • 2 篇 gong tieliang
  • 2 篇 kaloorazi maboud...
  • 2 篇 martinsson per-g...
  • 2 篇 toledo sivan
  • 2 篇 he haoze
  • 2 篇 chen chao
  • 2 篇 yu shujian
  • 2 篇 bach c.
  • 1 篇 erichson n. benj...
  • 1 篇 braverman vladim...

语言

  • 44 篇 英文
检索条件"主题词=Randomized Numerical Linear Algebra"
44 条 记 录,以下是1-10 订阅
排序:
Asymptotic Analysis of Sampling Estimators for randomized numerical linear algebra Algorithms
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 23卷
作者: Ma, Ping Chen, Yongkai Zhang, Xinlian Xing, Xin Ma, Jingyi Mahoney, Michael W. Univ Georgia Dept Stat Athens GA 30602 USA Univ Calif San Diego Dept Family Med & Publ Hlth La Jolla CA 92093 USA Virginia Tech Dept Stat Blacksburg VA USA Cent Univ Finance & Econ Dept Stat & Math Beijing Peoples R China Univ Calif Berkeley Int Comp Sci Inst Berkeley CA 94720 USA Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA
The statistical analysis of randomized numerical linear algebra (RandNLA) algorithms within the past few years has mostly focused on their performance as point estimators. However, this is insufficient for conducting ... 详细信息
来源: 评论
Asymptotic analysis of sampling estimators for randomized numerical linear algebra algorithms
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 7970-8014页
作者: Ping Ma Yongkai Chen Xinlian Zhang Xin Xing Jingyi Ma Michael W. Mahoney Department of Statistics University of Georgia Department of Family Medicine and Public Health University of California at San Diego Department of Statistics Virginia Tech Department of Statistics and Mathematics Central University of Finance and Economics International Computer Science Institute and Department of Statistics University of California at Berkeley
The statistical analysis of randomized numerical linear algebra (RandNLA) algorithms within the past few years has mostly focused on their performance as point estimators. However, this is insufficient for conducting ... 详细信息
来源: 评论
Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2025年 26卷
作者: Na, Sen Mahoney, Michael W. Georgia Inst Technol H Milton Stewart Sch Ind & Syst Engn Atlanta GA 30332 USA Univ Calif Berkeley ICSI Berkeley CA 94720 USA Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA
We consider online statistical inference of constrained stochastic nonlinear optimization problems. We apply the Stochastic Sequential Quadratic Programming (StoSQP) method to solve these problems, which can be regard... 详细信息
来源: 评论
randomized JOINT DIAGONALIZATION OF SYMMETRIC MATRICES
收藏 引用
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 2024年 第1期45卷 661-684页
作者: He, Haoze Kressner, Daniel Ecole Polytech Fed Lausanne EPFL Inst Math CH-1015 Lausanne Switzerland
Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint... 详细信息
来源: 评论
Data-driven model selections of second-order particle dynamics via integrating Gaussian processes with low-dimensional interacting structures
收藏 引用
PHYSICA D-NONlinear PHENOMENA 2024年 461卷
作者: Feng, Jinchao Kulick, Charles Tang, Sui Great Bay Univ Sch Sci Dongguan Guangdong Peoples R China Univ Calif Santa Barbara Dept Math Isla Vista CA 93106 USA
In this paper, we focus on the data -driven discovery of a general second -order particle -based model that contains many state-of-the-art models for modeling the aggregation and collective behavior of interacting age... 详细信息
来源: 评论
On the Noise Sensitivity of the randomized SVD
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2025年 第5期71卷 3802-3834页
作者: Romanov, Elad Stanford Univ Dept Stat Stanford CA 94305 USA
The randomized singular value decomposition (R-SVD) is a popular sketching-based algorithm for efficiently computing the partial SVD of a large matrix. When the matrix is low-rank, the R-SVD produces its partial SVD e... 详细信息
来源: 评论
SURROGATE-BASED AUTOTUNING FOR randomized SKETCHING ALGORITHMS IN REGRESSION PROBLEMS
收藏 引用
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 2025年 第2期46卷 1247-1279页
作者: Cho, Younghyun Demmel, James Derezin, Michal Li, Haoyun Luo, Hengrui Mahoney, Michael Murray, Riley Univ Calif Berkeley Berkeley CA 94720 USA Santa Clara Univ Santa Clara CA 95053 USA Univ Michigan Ann Arbor MI 48109 USA Georgia Inst Technol Atlanta GA 30332 USA Lawrence Berkeley Natl Lab Berkeley CA 94720 USA Rice Univ Houston TX 77005 USA Univ Calif Berkeley Lawrence Berkeley Natl Lab Berkeley CA 94720 USA Int Comp Sci Inst Berkeley CA USA Sandia Natl Labs Livermore CA 94550 USA
Algorithms from randomized numerical linear algebra (RandNLA) are known to be effective in handling high-dimensional computational problems, providing high-quality empirical performance as well as strong probabilistic... 详细信息
来源: 评论
Gradient Coding With Iterative Block Leverage Score Sampling
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2024年 第9期70卷 6639-6664页
作者: Charalambides, Neophytos Pilanci, Mert Hero, Alfred O. Univ Michigan Dept Elect Engn & Comp Sci Ann Arbor MI 48109 USA Univ Calif San Diego Dept Comp Sci & Engn San Diego CA 92093 USA Univ Calif San Diego Halicioglu Data Sci Inst San Diego CA 92093 USA Stanford Univ Dept Elect Engn Stanford CA 94305 USA Univ Michigan Dept Elect Engn & Comp Sci Ann Arbor MI 48109 USA
Gradient coding is a method for mitigating straggling servers in a centralized computing network that uses erasure-coding techniques to distributively carry out first-order optimization methods. randomized numerical l... 详细信息
来源: 评论
randomized methods for computing joint eigenvalues, with applications to multiparameter eigenvalue problems and root finding
收藏 引用
numerical ALGORITHMS 2024年 1-32页
作者: He, Haoze Kressner, Daniel Plestenjak, Bor Ecole Polytech Fed Lausanne EPFL Inst Math CH-1015 Lausanne Switzerland Univ Ljubljana Fac Math & Phys Jadranska 19 Ljubljana 1000 Slovenia Inst Math Phys & Mech Jadranska 19 Ljubljana 1000 Slovenia
It is well known that a family of nxn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \s... 详细信息
来源: 评论
randomized LOW-RANK APPROXIMATION OF MONOTONE MATRIX FUNCTIONS
收藏 引用
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 2023年 第2期44卷 894-918页
作者: Persson, David Kressner, Daniel EPF Lausanne Inst Math CH-1015 Lausanne Switzerland
This work is concerned with computing low-rank approximations of a matrix function f(A) for a large symmetric positive semidefinite matrix A, a task that arises in, e.g., statistical learning and inverse problems. The... 详细信息
来源: 评论