咨询与建议

限定检索结果

文献类型

  • 35 篇 期刊文献
  • 7 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 44 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 理学
    • 26 篇 数学
    • 4 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 生物学
  • 23 篇 工学
    • 16 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 3 篇 软件工程
    • 2 篇 控制科学与工程
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 44 篇 randomized numer...
  • 6 篇 low-rank approxi...
  • 6 篇 sketching
  • 5 篇 least squares
  • 4 篇 approximation al...
  • 3 篇 leverage scores
  • 3 篇 dimension reduct...
  • 3 篇 matrix decomposi...
  • 3 篇 rank-revealing f...
  • 2 篇 regression
  • 2 篇 image recovery
  • 2 篇 rank-revealing m...
  • 2 篇 randomized svd
  • 2 篇 coded computing
  • 2 篇 signal processin...
  • 2 篇 nonlinear dynami...
  • 2 篇 trace estimation
  • 2 篇 mean squared err...
  • 2 篇 asymptotic mean ...
  • 2 篇 nonlinear model ...

机构

  • 3 篇 univ calif berke...
  • 2 篇 univ michigan an...
  • 2 篇 int comp sci ins...
  • 2 篇 tech univ munich...
  • 2 篇 univ colorado bo...
  • 2 篇 ecole polytech f...
  • 2 篇 vrije univ amste...
  • 2 篇 queen mary univ ...
  • 2 篇 univ texas austi...
  • 1 篇 inst math phys &...
  • 1 篇 bmw grp res & in...
  • 1 篇 univ calif san d...
  • 1 篇 univ calif berke...
  • 1 篇 stanford univ in...
  • 1 篇 international co...
  • 1 篇 department of fa...
  • 1 篇 univ calif davis...
  • 1 篇 tel aviv univ sc...
  • 1 篇 georgia inst tec...
  • 1 篇 tel aviv univ sc...

作者

  • 4 篇 avron haim
  • 4 篇 mahoney michael ...
  • 3 篇 kressner daniel
  • 3 篇 chen jie
  • 2 篇 duddeck f.
  • 2 篇 charalambides ne...
  • 2 篇 dong yuxin
  • 2 篇 michael w. mahon...
  • 2 篇 song l.
  • 2 篇 pilanci mert
  • 2 篇 gong tieliang
  • 2 篇 kaloorazi maboud...
  • 2 篇 martinsson per-g...
  • 2 篇 toledo sivan
  • 2 篇 he haoze
  • 2 篇 chen chao
  • 2 篇 yu shujian
  • 2 篇 bach c.
  • 1 篇 erichson n. benj...
  • 1 篇 braverman vladim...

语言

  • 44 篇 英文
检索条件"主题词=Randomized Numerical Linear Algebra"
44 条 记 录,以下是11-20 订阅
排序:
randomized LOW-RANK APPROXIMATION OF MONOTONE MATRIX FUNCTIONS
收藏 引用
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 2023年 第2期44卷 894-918页
作者: Persson, David Kressner, Daniel EPF Lausanne Inst Math CH-1015 Lausanne Switzerland
This work is concerned with computing low-rank approximations of a matrix function f(A) for a large symmetric positive semidefinite matrix A, a task that arises in, e.g., statistical learning and inverse problems. The... 详细信息
来源: 评论
Simpler is better: a comparative study of randomized pivoting algorithms for CUR and interpolative decompositions
收藏 引用
ADVANCES IN COMPUTATIONAL MATHEMATICS 2023年 第4期49卷 1-29页
作者: Dong, Yijun Martinsson, Per-Gunnar Univ Texas Austin Oden Inst Computat Engn & Sci 201 E 24th St Austin TX 78712 USA Univ Texas Austin Dept Math 2515 Speedway PMA 8-100 Austin TX 78712 USA
Matrix skeletonizations like the interpolative and CUR decompositions provide a framework for low-rank approximation in which subsets of a given matrix's columns and/or rows are selected to form approximate spanni... 详细信息
来源: 评论
Bootstrapping the operator norm in high dimensions: Error estimation for covariance matrices and sketching
收藏 引用
BERNOULLI 2023年 第1期29卷 428-450页
作者: Lopes, Miles E. Erichson, N. Benjamin Mahoney, Michael W. Univ Calif Davis Dept Stat Math Sci Bldg Davis CA 95616 USA Univ Calif Berkeley Dept Stat Evans Hall Berkeley CA 94720 USA Int Comp Sci Inst Berkeley CA 94704 USA
Although the operator (spectral) norm is one of the most widely used metrics for covariance estimation, compara-tively little is known about the fluctuations of error in this norm. To be specific, let (Sigma) over cap... 详细信息
来源: 评论
PRACTICAL LEVERAGE-BASED SAMPLING FOR LOW-RANK TENSOR DECOMPOSITION
收藏 引用
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 2022年 第3期43卷 1488-1517页
作者: Larsen, Brett W. Kolda, Tamara G. Stanford Univ Stanford CA 94305 USA MathSci Ai Dublin CA 94568 USA
The low-rank canonical polyadic tensor decomposition is useful in data analysis and can be computed by solving a sequence of overdetermined least squares subproblems. Motivated by consideration of sparse tensors, we p... 详细信息
来源: 评论
Computationally Efficient Approximations for Matrix-Based Renyi's Entropy
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2022年 70卷 6170-6184页
作者: Gong, Tieliang Dong, Yuxin Yu, Shujian Dong, Bo Jiaotong Univ Sch Comp Sci & Technol Xian 710049 Peoples R China Shaanxi Prov Key Lab Big Data Knowledge Engn Xian 710049 Peoples R China UiT Arctic Univ Norway Machine Learning Grp N-9019 Tromso Norway Vrije Univ Amsterdam Dept Comp Sci NL-1081 HV Amsterdam Netherlands
The recently developed matrix-based Renyi's alpha-order entropy enables measurement of information in data simply using the eigenspectrum of symmetric positive semi-definite (PSD) matrices in reproducing kernel Hi... 详细信息
来源: 评论
Algorithmic Gaussianization through Sketching: Converting Data into Sub-gaussian Random Designs  36
Algorithmic Gaussianization through Sketching: Converting Da...
收藏 引用
36th Annual Conference on Learning Theory (COLT)
作者: Derezinski, Michal Univ Michigan Ann Arbor MI 48109 USA
Algorithmic Gaussianization is a phenomenon that can arise when using randomized sketching or sampling methods to produce smaller representations of large datasets: For certain tasks, these sketched representations ha... 详细信息
来源: 评论
Projection-Based QLP Algorithm for Efficiently Computing Low-Rank Approximation of Matrices
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2021年 69卷 2218-2232页
作者: Kaloorazi, Maboud F. Chen, Jie Northwestern Polytech Univ Sch Marine Sci & Technol Xian Peoples R China Xian Shiyou Univ Sch Elect Engn Xian 710000 Peoples R China
Matrices with low numerical rank are omnipresent in many signal processing and data analysis applications. The pivoted QLP (p-QLP) algorithm constructs a highly accurate approximation to an input low-rank matrix. Howe... 详细信息
来源: 评论
randomized QUASI-OPTIMAL LOCAL APPROXIMATION SPACES IN TIME
收藏 引用
SIAM JOURNAL ON SCIENTIFIC COMPUTING 2023年 第3期45卷 A1066-A1096页
作者: Schleub, Julia Smetana, Kathrin Ter Maat, Lukas Univ Munster Fac Math & Comp Sci Einsteinstr 62 D-48149 Munster Germany Stevens Inst Technol Dept Math Sci Hoboken NJ 07030 USA Univ Twente NL-7522 NB Enschede Netherlands
We target time-dependent partial differential equations (PDEs) with heterogeneous coefficients in space and time. To tackle these problems, we construct reduced basis/multiscale ansatz functions defined in space that ... 详细信息
来源: 评论
PLSS: A PROJECTED linear SYSTEMS SOLVER
收藏 引用
SIAM JOURNAL ON SCIENTIFIC COMPUTING 2023年 第2期45卷 A1012-A1037页
作者: Brust, Johannes J. Saunders, Michael A. Univ Calif San Diego Dept Math La Jolla CA 92093 USA Stanford Univ Dept Management Sci & Engn Stanford CA 94305 USA
We propose iterative projection methods for solving square or rectangular consistent linear systems Ax = b. Existing projection methods use sketching matrices (possibly randomized) to generate a sequence of small proj... 详细信息
来源: 评论
Statistical properties of sketching algorithms
收藏 引用
BIOMETRIKA 2021年 第2期108卷 283-297页
作者: Ahfock, D. C. Astle, W. J. Richardson, S. Univ Cambridge MRC Biostat Unit Robinson Way Cambridge CB2 0SR England
Sketching is a probabilistic data compression technique that has been largely developed by the computer science community. numerical operations on big datasets can be intolerably slow;sketching algorithms address this... 详细信息
来源: 评论