咨询与建议

限定检索结果

文献类型

  • 35 篇 期刊文献
  • 7 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 44 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 理学
    • 26 篇 数学
    • 4 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 生物学
  • 23 篇 工学
    • 16 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 3 篇 软件工程
    • 2 篇 控制科学与工程
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 44 篇 randomized numer...
  • 6 篇 low-rank approxi...
  • 6 篇 sketching
  • 5 篇 least squares
  • 4 篇 approximation al...
  • 3 篇 leverage scores
  • 3 篇 dimension reduct...
  • 3 篇 matrix decomposi...
  • 3 篇 rank-revealing f...
  • 2 篇 regression
  • 2 篇 image recovery
  • 2 篇 rank-revealing m...
  • 2 篇 randomized svd
  • 2 篇 coded computing
  • 2 篇 signal processin...
  • 2 篇 nonlinear dynami...
  • 2 篇 trace estimation
  • 2 篇 mean squared err...
  • 2 篇 asymptotic mean ...
  • 2 篇 nonlinear model ...

机构

  • 3 篇 univ calif berke...
  • 2 篇 univ michigan an...
  • 2 篇 int comp sci ins...
  • 2 篇 tech univ munich...
  • 2 篇 univ colorado bo...
  • 2 篇 ecole polytech f...
  • 2 篇 vrije univ amste...
  • 2 篇 queen mary univ ...
  • 2 篇 univ texas austi...
  • 1 篇 inst math phys &...
  • 1 篇 bmw grp res & in...
  • 1 篇 univ calif san d...
  • 1 篇 univ calif berke...
  • 1 篇 stanford univ in...
  • 1 篇 international co...
  • 1 篇 department of fa...
  • 1 篇 univ calif davis...
  • 1 篇 tel aviv univ sc...
  • 1 篇 georgia inst tec...
  • 1 篇 tel aviv univ sc...

作者

  • 4 篇 avron haim
  • 4 篇 mahoney michael ...
  • 3 篇 kressner daniel
  • 3 篇 chen jie
  • 2 篇 duddeck f.
  • 2 篇 charalambides ne...
  • 2 篇 dong yuxin
  • 2 篇 michael w. mahon...
  • 2 篇 song l.
  • 2 篇 pilanci mert
  • 2 篇 gong tieliang
  • 2 篇 kaloorazi maboud...
  • 2 篇 martinsson per-g...
  • 2 篇 toledo sivan
  • 2 篇 he haoze
  • 2 篇 chen chao
  • 2 篇 yu shujian
  • 2 篇 bach c.
  • 1 篇 erichson n. benj...
  • 1 篇 braverman vladim...

语言

  • 44 篇 英文
检索条件"主题词=Randomized Numerical Linear Algebra"
44 条 记 录,以下是21-30 订阅
排序:
Computing rank-revealing factorizations of matrices stored out-of-core
收藏 引用
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE 2023年 第22期35卷
作者: Heavner, N. Martinsson, P. G. Quintana-Orti, G. Univ Colorado Boulder Dept Appl Math Boulder CO USA Univ Texas Austin Dept Math Austin TX USA Univ Jaume 1 Dept Ingn & Ciencia Comp Castellon de La Plana Spain
This paper describes efficient algorithms for computing rank-revealing factorizations of matrices that are too large to fit in main memory (RAM), and must instead be stored on slow external memory devices such as disk... 详细信息
来源: 评论
Efficient algorithms for computing rank-revealing factorizations on a GPU
收藏 引用
numerical linear algebra WITH APPLICATIONS 2023年 第6期30卷
作者: Heavner, Nathan Chen, Chao Gopal, Abinand Martinsson, Per-Gunnar Univ Colorado Boulder Dept Appl Math Boulder CO USA Univ Texas Austin Oden Inst Austin TX 78712 USA Yale Univ Dept Math New Haven CT USA Univ Texas Austin Dept Math Austin TX USA
Standard rank-revealing factorizations such as the singular value decomposition (SVD) and column pivoted QR factorization are challenging to implement efficiently on a GPU. A major difficulty in this regard is the ina... 详细信息
来源: 评论
APPROXIMATE WEIGHTED CR CODED MATRIX MULTIPLICATION
APPROXIMATE WEIGHTED <i>CR</i> CODED MATRIX MULTIPLICATION
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Charalambides, Neophytos Pilanci, Mert Hero, Alfred O., III Univ Michigan EECS Dept Ann Arbor MI 48109 USA Stanford Univ EE Dept Stanford CA 94305 USA
One of the most common operations in signal processing is matrix multiplication. However, it presents a major computational bottleneck when the matrix dimension is high, as can occur for large data size or feature dim... 详细信息
来源: 评论
LSAR: efficient leverage score sampling algorithm for the analysis of big time series data
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 986-1021页
作者: Ali Eshragh Fred Roosta Asef Nazari Michael W. Mahoney School of Information and Physical Sciences University of Newcastle Australia and International Computer Science Institute Berkeley CA School of Mathematics and Physics University of Queensland Australia and International Computer Science Institute Berkeley CA School of Information Technology Deakin University Australia Department of Statistics University of California at Berkeley and International Computer Science Institute Berkeley CA
We apply methods from randomized numerical linear algebra (RandNLA) to develop improved algorithms for the analysis of large-scale time series data. We first develop a new fast algorithm to estimate the leverage score... 详细信息
来源: 评论
Newton-type methods for non-convex optimization under inexact Hessian information
收藏 引用
MATHEMATICAL PROGRAMMING 2020年 第1-2期184卷 35-70页
作者: Xu, Peng Roosta, Fred Mahoney, Michael W. Stanford Univ Inst Computat & Math Engn Stanford CA 94305 USA Univ Queensland Sch Math & Phys Brisbane Qld Australia Int Comp Sci Inst Berkeley CA 94704 USA Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA
We consider variants of trust-region and adaptive cubic regularization methods for non-convex optimization, in which the Hessian matrix is approximated. Under certain condition on the inexact Hessian, and using approx... 详细信息
来源: 评论
Efficient Low-Rank Approximation of Matrices Based on randomized Pivoted Decomposition
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2020年 68卷 3575-3589页
作者: Kaloorazi, Maboud F. Chen, Jie Northwestern Polytech Univ Ctr Intelligent Acoust & Immers Commun Sch Marine Sci & Technol Xian 710072 Peoples R China Minist Ind & Informat Technol Key Lab Ocean Acoust & Sensing Xian 710072 Peoples R China
Given a matrix A with numerical rank k, the twosided orthogonal decomposition (TSOD) computes a factorization A = UDVT, where U and V are orthogonal, and D is (upper/lower) triangular. TSOD is rank-revealing as the mi... 详细信息
来源: 评论
RCHOL: randomized CHOLESKY FACTORIZATION FOR SOLVING SDD linear SYSTEMS
收藏 引用
SIAM JOURNAL ON SCIENTIFIC COMPUTING 2021年 第6期43卷 C411-C438页
作者: Chen, Chao Liang, Tianyu Biros, George Univ Texas Austin Austin TX 78705 USA
We introduce a randomized algorithm, namely, rchol, to construct an approximate Cholesky factorization for a given Laplacian matrix (a.k.a., graph Laplacian). From a graph perspective, the exact Cholesky factorization... 详细信息
来源: 评论
Robust and Sample Optimal Algorithms for PSD Low Rank Approximation  61
Robust and Sample Optimal Algorithms for PSD Low Rank Approx...
收藏 引用
61st IEEE Annual Symposium on Foundations of Computer Science (FOCS)
作者: Bakshi, Ainesh Chepurko, Nadiia Woodruff, David P. CMU Pittsburgh PA 15213 USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA
Recently, Musco and Woodruff (FOCS, 2017) showed that given an nxn positive semidefinite (PSD) matrix A, it is possible to compute a (1 + epsilon)-approximate relative-error low-rank approximation to A by querying (O)... 详细信息
来源: 评论
LOW-RANK APPROXIMATION OF MATRICES VIA A RANK-REVEALING FACTORIZATION WITH RANDOMIZATION
LOW-RANK APPROXIMATION OF MATRICES VIA A RANK-REVEALING FACT...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Kaloorazi, Maboud Farzaneh Chen, Jie Northwestern Polytech Univ Sch Marine Sci & Technol Ctr Intelligent Acoust & Immers Commun CIAIC Xian Shaanxi Peoples R China
Given a matrix A with numerical rank k, the two-sided orthogonal decomposition (TSOD) computes a factorization A = UDVT, where U and V are unitary, and D is (upper/lower) triangular. TSOD is rank-revealing as the midd... 详细信息
来源: 评论
Subspace learning by randomized sketching
Subspace learning by randomized sketching
收藏 引用
作者: Rakshith Sharma Srinivasa Georgia Institute of Technology
学位级别:博士
High dimensional data is often accompanied by inherent low dimensionality that can be leveraged to design scalable machine learning and signal processing algorithms. Developing efficient computational frameworks that ... 详细信息
来源: 评论