咨询与建议

限定检索结果

文献类型

  • 35 篇 期刊文献
  • 7 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 44 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 理学
    • 26 篇 数学
    • 4 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 生物学
  • 23 篇 工学
    • 16 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 3 篇 软件工程
    • 2 篇 控制科学与工程
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 44 篇 randomized numer...
  • 6 篇 low-rank approxi...
  • 6 篇 sketching
  • 5 篇 least squares
  • 4 篇 approximation al...
  • 3 篇 leverage scores
  • 3 篇 dimension reduct...
  • 3 篇 matrix decomposi...
  • 3 篇 rank-revealing f...
  • 2 篇 regression
  • 2 篇 image recovery
  • 2 篇 rank-revealing m...
  • 2 篇 randomized svd
  • 2 篇 coded computing
  • 2 篇 signal processin...
  • 2 篇 nonlinear dynami...
  • 2 篇 trace estimation
  • 2 篇 mean squared err...
  • 2 篇 asymptotic mean ...
  • 2 篇 nonlinear model ...

机构

  • 3 篇 univ calif berke...
  • 2 篇 univ michigan an...
  • 2 篇 int comp sci ins...
  • 2 篇 tech univ munich...
  • 2 篇 univ colorado bo...
  • 2 篇 ecole polytech f...
  • 2 篇 vrije univ amste...
  • 2 篇 queen mary univ ...
  • 2 篇 univ texas austi...
  • 1 篇 inst math phys &...
  • 1 篇 bmw grp res & in...
  • 1 篇 univ calif san d...
  • 1 篇 univ calif berke...
  • 1 篇 stanford univ in...
  • 1 篇 international co...
  • 1 篇 department of fa...
  • 1 篇 univ calif davis...
  • 1 篇 tel aviv univ sc...
  • 1 篇 georgia inst tec...
  • 1 篇 tel aviv univ sc...

作者

  • 4 篇 avron haim
  • 4 篇 mahoney michael ...
  • 3 篇 kressner daniel
  • 3 篇 chen jie
  • 2 篇 duddeck f.
  • 2 篇 charalambides ne...
  • 2 篇 dong yuxin
  • 2 篇 michael w. mahon...
  • 2 篇 song l.
  • 2 篇 pilanci mert
  • 2 篇 gong tieliang
  • 2 篇 kaloorazi maboud...
  • 2 篇 martinsson per-g...
  • 2 篇 toledo sivan
  • 2 篇 he haoze
  • 2 篇 chen chao
  • 2 篇 yu shujian
  • 2 篇 bach c.
  • 1 篇 erichson n. benj...
  • 1 篇 braverman vladim...

语言

  • 44 篇 英文
检索条件"主题词=Randomized Numerical Linear Algebra"
44 条 记 录,以下是31-40 订阅
排序:
Fixed-precision randomized low-rank approximation methods for nonlinear model order reduction of large systems
收藏 引用
INTERNATIONAL JOURNAL FOR numerical METHODS IN ENGINEERING 2019年 第8期119卷 687-711页
作者: Bach, C. Duddeck, F. Song, L. Tech Univ Munich Dept Civil Geo & Environm Engn Munich Germany Res & Innovat Ctr BMW Grp Munich Germany Queen Mary Univ London Sch Engn & Mat Sci London England
Many model order reduction (MOR) methods employ a reduced basis V is an element of Rmxk to approximate the state variables. For nonlinear models, V is often computed using the snapshot method. The associated low-rank ... 详细信息
来源: 评论
SKETCHING FOR PRINCIPAL COMPONENT REGRESSION
收藏 引用
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 2019年 第2期40卷 454-485页
作者: Mor-Yosef, Liron Avron, Haim Tel Aviv Univ Sch Math Sci IL-6997801 Tel Aviv Israel
Principal component regression (PCR) is a useful method for regularizing least squares approximations. Although conceptually simple, straightforward implementations of PCR have high computational costs and so are inap... 详细信息
来源: 评论
randomized low-rank approximation methods for projection-based model order reduction of large nonlinear dynamical problems
收藏 引用
INTERNATIONAL JOURNAL FOR numerical METHODS IN ENGINEERING 2019年 第4期118卷 209-241页
作者: Bach, C. Ceglia, D. Song, L. Duddeck, F. Tech Univ Munich Dept Civil Geo & Environm Engn Munich Germany BMW Grp Res & Innovat Ctr Munich Germany Politecn Torino Dept Mech & Aerosp Engn Turin Italy Queen Mary Univ London Sch Engn & Mat Sci London England
Projection-based nonlinear model order reduction (MOR) methods typically make use of a reduced basis V is an element of R-mxk to approximate high-dimensional quantities. However, the most popular methods for computing... 详细信息
来源: 评论
randomized algorithms of maximum likelihood estimation with spatial autoregressive models for large-scale networks
收藏 引用
STATISTICS AND COMPUTING 2019年 第5期29卷 1165-1179页
作者: Li, Miaoqi Kang, Emily L. Univ Cincinnati Dept Math Sci Cincinnati OH 45221 USA
The spatial autoregressive (SAR) model is a classical model in spatial econometrics and has become an important tool in network analysis. However, with large-scale networks, existing methods of likelihood-based infere... 详细信息
来源: 评论
Approximations of Schatten Norms via Taylor Expansions  1
收藏 引用
14th International Computer Science Symposium in Russia (CSR)
作者: Braverman, Vladimir Johns Hopkins Univ Baltimore MD 21218 USA
In many applications of data science and machine learning data is represented by large matrices. Fast and accurate analysis of such matrices is a challenging task that is of paramount importance for the aforementioned... 详细信息
来源: 评论
Fast, Sparse Matrix Factorization and Matrix algebra via Random Sampling for Integral Equation Formulations in Electromagnetics
Fast, Sparse Matrix Factorization and Matrix Algebra via Ran...
收藏 引用
作者: Owen Tanner Wilkerson University of Kentucky
学位级别:硕士
Many systems designed by electrical & computer engineers rely on electromagnetic (EM) signals to transmit, receive, and extract either information or energy. In many cases, these systems are large and complex. The... 详细信息
来源: 评论
A randomized least squares solver for terabyte-sized dense overdetermined systems
收藏 引用
JOURNAL OF COMPUTATIONAL SCIENCE 2019年 36卷
作者: Iyer, Chander Avron, Haim Kollias, Georgios Ineichen, Yves Carothers, Christopher Drineas, Petros Rensselaer Polytech Inst Dept Comp Sci 110 8th St Troy NY 12180 USA Tel Aviv Univ Dept Appl Math POB 39040 Tel Aviv Israel IBM Res TJ Watson Res Ctr Yorktown Hts NY USA IBM Res Zurich Res Lab Zurich Switzerland
We present a fast randomized least-squares solver for distributed-memory platforms. Our solver is based on the Blendenpik algorithm, but employs multiple random projection schemes to construct a sketch of the input ma... 详细信息
来源: 评论
Detecting localized eigenstates of linear operators
收藏 引用
RESEARCH IN THE MATHEMATICAL SCIENCES 2018年 第3期5卷 1-14页
作者: Lu, Jianfeng Steinerberger, Stefan Duke Univ Dept Math Box 90320 Durham NC 27708 USA Duke Univ Dept Phys Box 90320 Durham NC 27708 USA Duke Univ Dept Chem Box 90320 Durham NC 27708 USA Yale Univ Dept Math New Haven CT 06511 USA
We describe a way of detecting the location of localized eigenvectors of the eigenvalue problem Ax = lambda x for eigenvalues lambda with vertical bar lambda vertical bar comparatively large. We define the family of f... 详细信息
来源: 评论
Spectral condition-number estimation of large sparse matrices
收藏 引用
numerical linear algebra WITH APPLICATIONS 2019年 第3期26卷
作者: Avron, Haim Druinsky, Alex Toledo, Sivan Tel Aviv Univ Sch Math Sci IL-69978 Tel Aviv Israel Tel Aviv Univ Sch Comp Sci Tel Aviv Israel
We describe a randomized Krylov-subspace method for estimating the spectral condition number of a real matrix A or indicating that it is numerically rank deficient. The main difficulty in estimating the condition numb... 详细信息
来源: 评论
Universality laws for randomized dimension reduction, with applications
收藏 引用
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA 2018年 第3期7卷 337-446页
作者: Oymak, Samet Tropp, Joel A. Simons Inst Theory Comp Melvin Calvin Lab Berkeley CA 94720 USA CALTECH Comp & Math Sci 1200 E Calif BlvdMC 305-16 Pasadena CA 91125 USA
Dimension reduction is the process of embedding high-dimensional data into a lower dimensional space to facilitate its analysis. In the Euclidean setting, one fundamental technique for dimension reduction is to apply ... 详细信息
来源: 评论