咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 理学
    • 3 篇 数学
  • 3 篇 工学
    • 2 篇 电气工程
    • 2 篇 计算机科学与技术...
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...

主题

  • 5 篇 randomized block...
  • 3 篇 convergence rate
  • 1 篇 subgradient proj...
  • 1 篇 greedy algorithm...
  • 1 篇 submodular maxim...
  • 1 篇 linearly coupled...
  • 1 篇 error bounds
  • 1 篇 asynchronous alg...
  • 1 篇 approximation al...
  • 1 篇 conditional grad...
  • 1 篇 composite minimi...
  • 1 篇 large-scale opti...
  • 1 篇 privacy-preservi...
  • 1 篇 convergence
  • 1 篇 optimization
  • 1 篇 linear programmi...
  • 1 篇 stochastic quasi...
  • 1 篇 accelerated coor...
  • 1 篇 iteration comple...
  • 1 篇 convex optimizat...

机构

  • 2 篇 henan univ sci &...
  • 1 篇 sapienza univ ro...
  • 1 篇 simon fraser uni...
  • 1 篇 microsoft res ma...
  • 1 篇 dalian univ tech...
  • 1 篇 suny albany dept...
  • 1 篇 dalian univ info...
  • 1 篇 univ genoa malga...
  • 1 篇 tongji univ sch ...

作者

  • 2 篇 zhang mingchuan
  • 2 篇 wu qingtao
  • 1 篇 ge quanbo
  • 1 篇 xu min
  • 1 篇 salzo saverio
  • 1 篇 villa silvia
  • 1 篇 ying yiming
  • 1 篇 lu zhaosong
  • 1 篇 traore cheik
  • 1 篇 zhu junlong
  • 1 篇 fang qin
  • 1 篇 zhou yangfan
  • 1 篇 xiao lin
  • 1 篇 zheng ruijuan
  • 1 篇 wang lin
  • 1 篇 xing ling

语言

  • 5 篇 英文
检索条件"主题词=Randomized block-coordinate descent"
5 条 记 录,以下是1-10 订阅
排序:
On the complexity analysis of randomized block-coordinate descent methods
收藏 引用
MATHEMATICAL PROGRAMMING 2015年 第1-2期152卷 615-642页
作者: Lu, Zhaosong Xiao, Lin Simon Fraser Univ Dept Math Burnaby BC V5A 1S6 Canada Microsoft Res Machine Learning Grp Redmond WA 98052 USA
In this paper we analyze the randomized block-coordinate descent (RBCD) methods proposed in Nesterov (SIAM J Optim 22(2):341-362, 2012), Richtarik and Taka (Math Program 144(1-2):1-38, 2014) for minimizing the sum of ... 详细信息
来源: 评论
Decentralized randomized block-coordinate Frank-Wolfe Algorithms for Submodular Maximization Over Networks
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2022年 第8期52卷 5081-5091页
作者: Zhang, Mingchuan Zhou, Yangfan Ge, Quanbo Zheng, Ruijuan Wu, Qingtao Henan Univ Sci & Technol Sch Informat Engn Luoyang 471023 Peoples R China Tongji Univ Sch Elect & Informat Engn Shanghai 200092 Peoples R China
We consider decentralized large-scale continuous submodular constrained optimization problems over networks, where the goal is to maximize a sum of nonconvex functions with diminishing returns property. However, the c... 详细信息
来源: 评论
Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2023年 第1期86卷 303-344页
作者: Traore, Cheik Salzo, Saverio Villa, Silvia Univ Genoa Malga Ctr DIMA Genoa Italy Sapienza Univ Roma DIAG Rome Italy
In this paper, we study the convergence properties of a randomized block-coordinate descent algorithm for the minimization of a composite convex objective function, where the block-coordinates are updated asynchronous... 详细信息
来源: 评论
Faster convergence of a randomized coordinate descent method for linearly constrained optimization problems
收藏 引用
ANALYSIS AND APPLICATIONS 2018年 第5期16卷 741-755页
作者: Fang, Qin Xu, Min Ying, Yiming Dalian Univ Informat & Engn Coll Dalian 116622 Peoples R China Dalian Univ Technol Sch Math Sci Dalian 116024 Peoples R China SUNY Albany Dept Math & Stat Albany NY 12222 USA
The problem of minimizing a separable convex function under linearly coupled constraints arises from various application domains such as economic systems, distributed control, and network flow. The main challenge for ... 详细信息
来源: 评论
A privacy-preserving decentralized randomized block-coordinate subgradient algorithm over time-varying networks
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 208卷
作者: Wang, Lin Zhang, Mingchuan Zhu, Junlong Xing, Ling Wu, Qingtao Henan Univ Sci & Technol Sch Informat Engn Luoyang 471023 Peoples R China
This study considers a constrained huge-scale optimization problem over networks where the objective is to minimize the sum of nonsmooth local loss functions. To solve this problem, many optimization algorithms have b... 详细信息
来源: 评论