咨询与建议

限定检索结果

文献类型

  • 8 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 11 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 控制科学与工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 数学

主题

  • 12 篇 randomized learn...
  • 8 篇 feedforward neur...
  • 6 篇 neural networks ...
  • 3 篇 generalization e...
  • 2 篇 function approxi...
  • 2 篇 weak stability
  • 2 篇 data-driven rand...
  • 2 篇 strong stability
  • 2 篇 empirical error
  • 1 篇 bootstrap method...
  • 1 篇 distribution dep...
  • 1 篇 sensitivity anal...
  • 1 篇 activation funct...
  • 1 篇 randomized model...
  • 1 篇 autoencoder
  • 1 篇 bagging
  • 1 篇 differential pri...
  • 1 篇 leave-one-out er...
  • 1 篇 data dependent p...
  • 1 篇 stability

机构

  • 3 篇 czestochowa tech...
  • 2 篇 czestochowa tech...
  • 2 篇 czestochowa tech...
  • 1 篇 tourism and cult...
  • 1 篇 czestochowa tech...
  • 1 篇 school of inform...
  • 1 篇 yunnan univ tour...
  • 1 篇 univ genoa dibri...
  • 1 篇 shaoyang univ sh...
  • 1 篇 univ genoa diten...
  • 1 篇 yunnan normal un...
  • 1 篇 shaoyang univers...
  • 1 篇 ucl dept comp sc...
  • 1 篇 inseat technol m...
  • 1 篇 ibm zurich res l...

作者

  • 8 篇 dudek grzegorz
  • 1 篇 zhiyang jia
  • 1 篇 ridella sandro
  • 1 篇 luo ke
  • 1 篇 anguita davide
  • 1 篇 wei gao
  • 1 篇 ke luo
  • 1 篇 jia zhiyang
  • 1 篇 evgeniou t
  • 1 篇 cipollini france...
  • 1 篇 gao wei
  • 1 篇 pontil m
  • 1 篇 elisseeff a
  • 1 篇 oneto luca

语言

  • 11 篇 英文
  • 1 篇 中文
检索条件"主题词=Randomized learning algorithms"
12 条 记 录,以下是1-10 订阅
排序:
Autoencoder based randomized learning of Feedforward Neural Networks for Regression
Autoencoder based Randomized Learning of Feedforward Neural ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Dudek, Grzegorz Czestochowa Tech Univ Dept Elect Engn Czestochowa Poland
Feedforward neural networks are widely used as universal predictive models to fit data distribution. Common gradient-based learning, however, suffers from many drawbacks making the training process ineffective and tim... 详细信息
来源: 评论
randomized learning: Generalization performance of old and new theoretically grounded algorithms
收藏 引用
NEUROCOMPUTING 2018年 298卷 21-33页
作者: Oneto, Luca Cipollini, Francesca Ridella, Sandro Anguita, Davide Univ Genoa DIBRIS Via Opera Pia 13 I-16145 Genoa Italy Univ Genoa DITEN Via Opera Pia 11a I-16145 Genoa Italy
In the context of assessing the generalization abilities of a randomized model or learning algorithm, PAC-Bayes and Differential Privacy (DP) theories are the state-of-the-art tools. For this reason, in this paper, we... 详细信息
来源: 评论
A constructive approach to data-driven randomized learning for feedforward neural networks
收藏 引用
APPLIED SOFT COMPUTING 2021年 112卷 107797-107797页
作者: Dudek, Grzegorz Czestochowa Tech Univ Fac Elect Engn 17 Armii Krajowej Ave PL-42200 Czestochowa Poland
There is an issue with the way in which feedforward neural networks with random hidden nodes generate random parameters in order to obtain a good projection space. Typically, random weights and biases are both drawn f... 详细信息
来源: 评论
Data-Driven randomized learning of Feedforward Neural Networks
Data-Driven Randomized Learning of Feedforward Neural Networ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN) held as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Dudek, Grzegorz Czestochowa Tech Univ Dept Elect Engn Czestochowa Poland
randomized methods of neural network learning suffer from a problem with the generation of random parameters as they are difficult to set optimally to obtain a good projection space. The standard method draws the para... 详细信息
来源: 评论
Generating Random Parameters in Feedforward Neural Networks with Random Hidden Nodes: Drawbacks of the Standard Method and How to Improve It  27th
Generating Random Parameters in Feedforward Neural Networks ...
收藏 引用
27th International Conference on Neural Information Processing
作者: Dudek, Grzegorz Czestochowa Tech Univ Elect Engn Fac Czestochowa Poland
The standard method of generating random weights and biases in feedforward neural networks with random hidden nodes selects them both from the uniform distribution over the same fixed interval. In this work, we show t... 详细信息
来源: 评论
Data-Driven learning of Feedforward Neural Networks with Different Activation Functions  20th
Data-Driven Learning of Feedforward Neural Networks with Dif...
收藏 引用
20th International Conference on Artificial Intelligence and Soft Computing (ICAISC)
作者: Dudek, Grzegorz Czestochowa Tech Univ Czestochowa Poland
This work contributes to the development of a new data-driven method (D-DM) of feedforward neural networks (FNNs) learning. This method was proposed recently as a way of improving randomized learning of FNNs by adjust... 详细信息
来源: 评论
Improving randomized learning of Feedforward Neural Networks by Appropriate Generation of Random Parameters  15th
Improving Randomized Learning of Feedforward Neural Networks...
收藏 引用
15th International Work-Conference on Artificial Neural Networks (IWANN)
作者: Dudek, Grzegorz Czestochowa Tech Univ Dept Elect Engn Czestochowa Poland
In this work, a method of random parameters generation for randomized learning of a single-hidden-layer feedforward neural network is proposed. The method firstly, randomly selects the slope angles of the hidden neuro... 详细信息
来源: 评论
Sensitivity Analysis of the Neural Networks randomized learning  18th
Sensitivity Analysis of the Neural Networks Randomized Learn...
收藏 引用
18th International Conference on Artificial Intelligence and Soft Computing (ICAISC)
作者: Dudek, Grzegorz Czestochowa Tech Univ Elect Engn Fac Czestochowa Poland
randomized algorithms for learning feedforward neural networks are increasingly used in practice. They offer very speed training because the only parameters that are learned are the output weights. Parameters of hidde... 详细信息
来源: 评论
Strong and Weak Stability of randomized learning algorithms
Strong and Weak Stability of Randomized Learning Algorithms
收藏 引用
14th IEEE International Conference on Communication Technology (ICCT)
作者: Luo, Ke Jia, Zhiyang Gao, Wei Shaoyang Univ Shaoyang Univ Lib Shaoyang Hunan Peoples R China Yunnan Univ Tourism & Culture Coll Lijiang Yunnan Peoples R China Yunnan Normal Univ Sch Informat Kunming Yunnan Peoples R China
An algorithm is called stable at a training set S if any change of a single point in S yields only a small change in the output. Stability of the learning algorithm is necessary for learnability in the supervised clas... 详细信息
来源: 评论
Generating random weights and biases in feedforward neural networks with random hidden nodes
收藏 引用
INFORMATION SCIENCES 2019年 481卷 33-56页
作者: Dudek, Grzegorz Czestochowa Tech Univ Fac Elect Engn 17 Armii Krajowej Ave PL-42200 Czestochowa Poland
Neural networks with random hidden nodes have gained increasing interest from researchers and practical applications. This is due to their unique features such as very fast training and universal approximation propert... 详细信息
来源: 评论