咨询与建议

限定检索结果

文献类型

  • 3 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 电气工程
    • 3 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 3 篇 rate-distortion-...
  • 2 篇 deep learning
  • 2 篇 auto-encoder
  • 1 篇 trellis-coded qu...
  • 1 篇 deep-learning
  • 1 篇 trellis-coded-qu...
  • 1 篇 high efficiency ...
  • 1 篇 versatile video ...
  • 1 篇 image compressio...
  • 1 篇 quantization

机构

  • 2 篇 free univ berlin...
  • 2 篇 tech univ berlin...
  • 1 篇 heinrich hertz i...
  • 1 篇 fraunhofer inst ...
  • 1 篇 fraunhofer inst ...

作者

  • 3 篇 wiegand thomas
  • 3 篇 schwarz heiko
  • 3 篇 pfaff jonathan
  • 3 篇 marpe detlev
  • 2 篇 schaefer michael
  • 1 篇 borzechowski flo...
  • 1 篇 pientka sophie
  • 1 篇 schafer michael
  • 1 篇 suhring karsten

语言

  • 3 篇 英文
检索条件"主题词=Rate-Distortion-Optimization"
3 条 记 录,以下是1-10 订阅
排序:
rate-distortion-optimization FOR DEEP IMAGE COMPRESSION
RATE-DISTORTION-OPTIMIZATION FOR DEEP IMAGE COMPRESSION
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Schaefer, Michael Pientka, Sophie Pfaff, Jonathan Schwarz, Heiko Marpe, Detlev Wiegand, Thomas Fraunhofer Inst Telecommun Video Commun & Applicat Dept Heinrich Hertz Inst Einsteinufer 37 D-10587 Berlin Germany
Given the capabilities of massive GPU hardware, there has been a surge of using artificial neural networks (ANN) for still image compression. These compression systems usually consist of convolutional layers and can b... 详细信息
来源: 评论
TRELLIS-CODED QUANTIZATION FOR END-TO-END LEARNED IMAGE COMPRESSION  29
TRELLIS-CODED QUANTIZATION FOR END-TO-END LEARNED IMAGE COMP...
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Suhring, Karsten Schafer, Michael Pfaff, Jonathan Schwarz, Heiko Marpe, Detlev Wiegand, Thomas Fraunhofer Inst Telecommun Heinrich Hertz Inst Berlin Germany Free Univ Berlin Inst Comp Sci Berlin Germany Tech Univ Berlin Dept Telecommun Syst Berlin Germany
The performance of variational auto-encoders (VAE) for image compression has steadily grown in recent years, thus becoming competitive with advanced visual data compression technologies. These neural networks transfor... 详细信息
来源: 评论
OPTIMIZING LEARNED IMAGE COMPRESSION ON SCALAR AND ENTROPY-CONSTRAINT QUANTIZATION  31
OPTIMIZING LEARNED IMAGE COMPRESSION ON SCALAR AND ENTROPY-C...
收藏 引用
2024 International Conference on Image Processing
作者: Borzechowski, Florian Schaefer, Michael Schwarz, Heiko Pfaff, Jonathan Marpe, Detlev Wiegand, Thomas Heinrich Hertz Inst Nachrichtentech Berlin GmbH Fraunhofer Inst Telecommun Berlin Germany Free Univ Berlin Inst Comp Sci Berlin Germany Tech Univ Berlin Dept Telecommun Syst Berlin Germany
The continuous improvements on image compression with variational autoencoders have lead to learned codecs competitive with conventional approaches in terms of rate-distortion efficiency. Nonetheless, taking the quant... 详细信息
来源: 评论