咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是91-100 订阅
排序:
Re-Identification with Consistent Attentive Siamese Networks  32
Re-Identification with Consistent Attentive Siamese Networks
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zheng, Meng Karanam, Srikrishna Wu, Ziyan Radke, Richard J. Rensselaer Polytech Inst Dept Elect Comp & Syst Engn Troy NY 12180 USA Siemens Corp Technol Princeton NJ USA
We propose a new deep architecture for person re-identification (re-id). While re-id has seen much recent progress, spatial localization and view-invariant representation learning for robust cross-view matching remain... 详细信息
来源: 评论
Wide-Area Crowd Counting via Ground-Plane Density Maps and Multi-View Fusion CNNs  32
Wide-Area Crowd Counting via Ground-Plane Density Maps and M...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zhang, Qi Chan, Antoni B. City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China
Crowd counting in single-view images has achieved outstanding performance on existing counting datasets. However, single-view counting is not applicable to large and wide scenes (e.g., public parks, long subway platfo... 详细信息
来源: 评论
Cross-Modal Relationship Inference for Grounding Referring Expressions  32
Cross-Modal Relationship Inference for Grounding Referring E...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Yang, Sibei Li, Guanbin Yu, Yizhou Univ Hong Kong Hong Kong Peoples R China Sun Yat sen Univ Guangzhou Guangdong Peoples R China Deepwise AI Lab Beijing Peoples R China
Grounding referring expressions is a fundamental yet challenging task facilitating human-machine communication in the physical world. It locates the target object in an image on the basis of the comprehension of the r... 详细信息
来源: 评论
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning  32
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learnin...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wang, Xin Yu, Fisher Wang, Ruth Darrell, Trevor Gonzalez, Joseph E. Univ Calif Berkeley Berkeley CA 94720 USA
Learning good feature embeddings for images often requires substantial training data. As a consequence, in settings where training data is limited (e.g., few-shot and zero-shot learning), we are typically forced to us... 详细信息
来源: 评论
Barrage of Random Transforms for Adversarially Robust Defense  32
Barrage of Random Transforms for Adversarially Robust Defens...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Raff, Edward Sylvester, Jared Forsyth, Steven McLean, Mark Lab Phys Sci Columbia MD USA Booz Allen Hamilton Mclean VA 22102 USA NVIDIA Santa Clara CA USA UMBC Baltimore MD 21250 USA
Defenses against adversarial examples, when using the ImageNet dataset, are historically easy to defeat. The common understanding is that a combination of simple image transformations and other various defenses are in... 详细信息
来源: 评论
Ranked List Loss for Deep Metric Learning  32
Ranked List Loss for Deep Metric Learning
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wang, Xinshao Hua, Yang Kodirov, Elyor Hu, Guosheng Garnier, Romain Robertson, Neil M. Queens Univ Belfast Sch Elect Elect Engn & Comp Sci Belfast Antrim North Ireland Anyvis Res Team London England
The objective of deep metric learning (DML) is to learn embeddings that can capture semantic similarity information among data points. Existing pairwise or tripletwise loss functions used in DML are known to suffer fr... 详细信息
来源: 评论
Sequence-to-Sequence Domain Adaptation Network for Robust Text Image recognition  32
Sequence-to-Sequence Domain Adaptation Network for Robust Te...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zhang, Yaping Nie, Shuai Liu, Wenju Xu, Xing Zhang, Dongxiang Shen, Heng Tao Chinese Acad Sci CASIA Inst Automat Natl Lab Pattern Recognit Beijing Peoples R China Univ Chinese Acad Sci UCAS Sch Artificial Intelligence Beijing Peoples R China Univ Elect Sci & Technol China Ctr Future Media Chengdu Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Peoples R China Zhejiang Univ Coll Comp Sci & Technol Hangzhou Peoples R China Afanti AI Lab Beijing Peoples R China
Domain adaptation has shown promising advances for alleviating domain shift problem. However, recent visual domain adaptation works usually focus on non-sequential object recognition with a global coarse alignment, wh... 详细信息
来源: 评论
Large-Scale Long-Tailed recognition in an Open World  32
Large-Scale Long-Tailed Recognition in an Open World
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Liu, Ziwei Miao, Zhongqi Zhan, Xiaohang Wang, Jiayun Gong, Boqing Yu, Stella X. Chinese Univ Hong Kong Hong Kong Peoples R China Univ Calif Berkeley ICSI Berkeley CA 94704 USA Tencent AI Lab Bellevue WA USA
Real world data often have a long-tailed and open-ended distribution. A practical recognition system must classify among majority and minority classes, generalize from a few known instances, and acknowledge novelty up... 详细信息
来源: 评论
Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Graph Networks  32
Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Gr...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Reddy, N. Dinesh Vo, Minh Narasimhan, Srinivasa G. Carnegie Mellon Univ Pittsburgh PA 15213 USA
We present Occlusion-Net(1), a framework to predict 2D and 3D locations of occluded keypoints for objects, in a largely self-supervised manner. We use an off-the-shelf detector as input (e.g. MaskRCNN [16]) that is tr... 详细信息
来源: 评论
Transferrable Prototypical Networks for Unsupervised Domain Adaptation  32
Transferrable Prototypical Networks for Unsupervised Domain ...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Pan, Yingwei Yao, Ting Li, Yehao Wang, Yu Ngo, Chong-Wah Mei, Tao JD AI Res Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China City Univ Hong Kong Kowloon Hong Kong Peoples R China
In this paper, we introduce a new idea for unsupervised domain adaptation via a remold of Prototypical Networks, which learn an embedding space and perform classification via a remold of the distances to the prototype... 详细信息
来源: 评论