咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是111-120 订阅
排序:
Inverse Cooking: Recipe Generation from Food Images  32
Inverse Cooking: Recipe Generation from Food Images
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Salvador, Amaia Drozdzal, Michal Giro-i-Nieto, Xavier Romero, Adriana Univ Politecn Cataluna Barcelona Spain Facebook AI Res Menlo Pk CA USA
People enjoy food photography because they appreciate food. Behind each meal there is a story described in a complex recipe and, unfortunately, by simply looking at a food image we do not have access to its preparatio... 详细信息
来源: 评论
AOGNets: Compositional Grammatical Architectures for Deep Learning  32
AOGNets: Compositional Grammatical Architectures for Deep Le...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Li, Xilai Song, Xi Wu, Tianfu North Carolina State Univ Dept ECE Raleigh NC 27695 USA North Carolina State Univ Visual Narrat Initiat Raleigh NC 27695 USA
Neural architectures are the foundation for improving performance of deep neural networks (DNNs). This paper presents deep compositional grammatical architectures which harness the best of two worlds: grammar models a... 详细信息
来源: 评论
Part-regularized Near-duplicate Vehicle Re-identification  32
Part-regularized Near-duplicate Vehicle Re-identification
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: He, Bing Li, Jia Zhao, Yifan Tian, Yonghong Beihang Univ SCSE State Key Lab Virtual Real Technol & Syst Beijing Peoples R China Peking Univ Sch EE&CS Natl Engn Lab Video Technol Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing Peoples R China
Vehicle re-identification (Re-ID) has been attracting more interests in computer vision owing to its great contributions in urban surveillance and intelligent transportation. With the development of deep learning appr... 详细信息
来源: 评论
R2GAN: Cross-modal Recipe Retrieval with Generative Adversarial Network  32
R<SUP>2</SUP>GAN: Cross-modal Recipe Retrieval with Generati...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zhu, Bin Ngo, Chong-Wah Chen, Jingjing Hao, Yanbin City Univ Hong Kong Hong Kong Peoples R China Natl Univ Singapore Singapore Singapore
Representing procedure text such as recipe for cross modal retrieval is inherently a difficult problem, not mentioning to generate image from recipe for visualization. This paper studies a new version of GAN, named Re... 详细信息
来源: 评论
PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding  32
PartNet: A Large-scale Benchmark for Fine-grained and Hierar...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Mo, Kaichun Zhu, Shilin Chang, Angel X. Yi, Li Tripathi, Subarna Guibas, Leonidas J. Su, Hao Stanford Univ Stanford CA 94305 USA Univ Calif San Diego La Jolla CA USA Simon Fraser Univ Burnaby BC Canada Intel AI Lab San Diego CA USA Facebook AI Res Menlo Pk CA USA
We present PartNet: a consistent, large-scale dataset of 3D objects annotated with fine-grained, instance-level, and hierarchical 3D part information. Our dataset consists of 573,585 part instances over 26,671 3D mode... 详细信息
来源: 评论
Grid R-CNN  32
Grid R-CNN
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Lu, Xin Li, Buyu Yue, Yuxin Li, Quanquan Yan, Junjie SenseTime Res Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Beihang Univ Beijing Peoples R China
This paper proposes a novel object detection framework named Grid R-CNN, which adopts a grid guided localization mechanism for accurate object detection. Different from the traditional regression based methods, the Gr... 详细信息
来源: 评论
Action recognition from Single Timestamp Supervision in Untrimmed Videos  32
Action Recognition from Single Timestamp Supervision in Untr...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Moltisanti, Davide Fidler, Sanja Damen, Dima Univ Bristol Visual Informat Lab Bristol Avon England Univ Toronto NVIDIA Vector Inst Toronto ON Canada
Recognising actions in videos relies on labelled supervision during training, typically the start and end times of each action instance. This supervision is not only subjective, but also expensive to acquire. Weak vid... 详细信息
来源: 评论
SSN: Learning Sparse Switchable Normalization via SparsestMax  32
SSN: Learning Sparse Switchable Normalization via SparsestMa...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Shao, Wenqi Meng, Tianjian Li, Jingyu Zhang, Ruimao Li, Yudian Wang, Xiaogang Luo, Ping Chinese Univ Hong Kong CHUK SenseTime Joint Lab Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China Univ Pittsburgh Pittsburgh PA 15260 USA
Normalization methods improve both optimization and generalization of ConvNets. To further boost performance, the recently-proposed switchable normalization (SN) provides a new perspective for deep learning: it learns... 详细信息
来源: 评论
VRSTC: Occlusion-Free Video Person Re-Identification  32
VRSTC: Occlusion-Free Video Person Re-Identification
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Hou, Ruibing Ma, Bingpeng Chang, Hong Gu, Xinqian Shan, Shiguang Chen, Xilin Chinese Acad Sci Key Lab Intelligent Informat Proc Inst Comp Technol CAS Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China CAS Ctr Excellence Brain Sci & Intelligence Techn Shanghai 200031 Peoples R China
Video person re-identification (re-ID) plays an important role in surveillance video analysis. However, the performance of video re-ID degenerates severely under partial occlusion. In this paper, we propose a novel ne... 详细信息
来源: 评论
Learning Spatial Common Sense with Geometry-Aware Recurrent Networks  32
Learning Spatial Common Sense with Geometry-Aware Recurrent ...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Tung, Hsiao-Yu Fish Cheng, Ricson Fragkiadaki, Katerina Carnegie Mellon Univ Pittsburgh PA 15213 USA Uber Adv Technol Grp Pittsburgh PA USA
We integrate two powerful ideas, geometry and deep visual representation learning, into recurrent network architectures for mobile visual scene understanding. The proposed networks learn to "lift" 2D visual ... 详细信息
来源: 评论