咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是131-140 订阅
排序:
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks  32
Evading Defenses to Transferable Adversarial Examples by Tra...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Dong, Yinpeng Pang, Tianyu Su, Hang Zhu, Jun Tsinghua Univ Dept Comp Sci & Tech BNRist Ctr State Key Lab Intell Tech & SysInst AITHBI Lab Beijing 100084 Peoples R China
Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of adversarial examples is their good transferability, making bl... 详细信息
来源: 评论
Hybrid Scene Compression for Visual Localization  32
Hybrid Scene Compression for Visual Localization
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Camposeco, Federico Cohen, Andrea Pollefeys, Marc Sattler, Torsten Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Microsoft Zurich Switzerland Chalmers Univ Technol Gothenburg Sweden
Localizing an image w.r.t. a 3D scene model represents a core task for many computer vision applications. An increasing number of real-world applications of visual localization on mobile devices, e.g., Augmented Reali... 详细信息
来源: 评论
Deep Multimodal Clustering for Unsupervised Audiovisual Learning  32
Deep Multimodal Clustering for Unsupervised Audiovisual Lear...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Hu, Di Nie, Feiping Li, Xuelong Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China Northwestern Polytech Univ Ctr OPT IMagery Anal & Learning OPTIMAL Xian 710072 Peoples R China
The seen birds twitter, the running cars accompany with noise, etc. These naturally audiovisual correspondences provide the possibilities to explore and understand the outside world. However, the mixed multiple object... 详细信息
来源: 评论
Unsupervised Domain Adaptation using Feature-Whitening and Consensus Loss  32
Unsupervised Domain Adaptation using Feature-Whitening and C...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Roy, Subhankar Siarohin, Aliaksandr Sangineto, Enver Bulo, Samuel Rota Sebe, Nicu Ricci, Elisa Univ Trento DISI Trento TN Italy Fdn Bruno Kessler Trento Italy Mapillary Res Malmo Sweden
A classifier trained on a dataset seldom works on other datasets obtained under different conditions due to domain shift. This problem is commonly addressed by domain adaptation methods. In this work we introduce a no... 详细信息
来源: 评论
You Look Twice: GaterNet for Dynamic Filter Selection in CNNs  32
You Look Twice: GaterNet for Dynamic Filter Selection in CNN...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Chen, Zhourong Li, Yang Bengio, Samy Si, Si Google Res Mountain View CA 94043 USA Hong Kong Univ Sci & Technol Hong Kong Peoples R China Google Mountain View CA 94043 USA
The concept of conditional computation for deep nets has been proposed previously to improve model performance by selectively using only parts of the model conditioned on the sample it is processing. In this paper, we... 详细信息
来源: 评论
Knockoff Nets: Stealing Functionality of Black-Box Models  32
Knockoff Nets: Stealing Functionality of Black-Box Models
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Orekondy, Tribhuvanesh Schiele, Bernt Fritz, Mario Max Planck Inst Informat Saarbrucken Germany CISPA Helmholtz Ctr Informat Secur Saarland Informat Campus Saarbrucken Germany
Machine Learning (ML) models are increasingly deployed in the wild to perform a wide range of tasks. In this work, we ask to what extent can an adversary steal functionality of such "victim'' models based... 详细信息
来源: 评论
Divide and Conquer the Embedding Space for Metric Learning  32
Divide and Conquer the Embedding Space for Metric Learning
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Sanakoyeu, Artsiom Tschernezki, Vadim Buechler, Uta Ommer, Bjoern Heidelberg Univ IWR Heidelberg Collaboratory Image Proc Heidelberg Germany
Learning the embedding space, where semantically similar objects are located close together and dissimilar objects far apart, is a cornerstone of many computer vision applications. Existing approaches usually learn a ... 详细信息
来源: 评论
Locating Objects Without Bounding Boxes  32
Locating Objects Without Bounding Boxes
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Ribera, Javier Guera, David Chen, Yuhao Delp, Edward J. Purdue Univ Video & Image Proc Lab VIPER W Lafayette IN 47907 USA
Recent advances in convolutional neural networks (CNN) have achieved remarkable results in locating objects in images. In these networks, the training procedure usually requires providing bounding boxes or the maximum... 详细信息
来源: 评论
Stochastic Class-based Hard Example Mining for Deep Metric Learning  32
Stochastic Class-based Hard Example Mining for Deep Metric L...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Suh, Yumin Han, Bohyung Kim, Wonsik Lee, Kyoung Mu Seoul Natl Univ ECE Seoul South Korea Seoul Natl Univ ASRI Seoul South Korea Samsung Res Samsung Elect Seoul South Korea
Performance of deep metric learning depends heavily on the capability of mining hard negative examples during training. However many metric learning algorithms often require intractable computational cost due to frequ... 详细信息
来源: 评论
Polynomial Representation for Persistence Diagram  32
Polynomial Representation for Persistence Diagram
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wang, Zhichao Li, Qian Li, Gang Xu, Guandong Univ New South Wales Sch Elect Engn & Telecommun Sydney NSW Australia Univ Technol Sydney Adv Analyt Inst Sydney NSW Australia Deakin Univ Sch Informat Technol Geelong Vic 3216 Australia
Persistence diagram (PD) has been considered as a compact descriptor for topological data analysis (TDA). Unfortunately, PD cannot be directly used in machine learning methods since it is a multiset of points. Recent ... 详细信息
来源: 评论