咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是151-160 订阅
排序:
Pyramidal Person Re-IDentification via Multi-Loss Dynamic Training  32
Pyramidal Person Re-IDentification via Multi-Loss Dynamic Tr...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zheng, Feng Deng, Cheng Sun, Xing Jiang, Xinyang Guo, Xiaowei Yu, Zongqiao Huang, Feiyue Ji, Rongrong Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen 518055 Peoples R China Xidian Univ Sch Elect Engn Xian 710071 Peoples R China YouTu Lab Tencent Shanghai Peoples R China Xiamen Univ Sch Informat Sci & Engn Xiamen Peoples R China Peng Cheng Lab Shenzhen Peoples R China YouTu Lab Shanghai Peoples R China
Most existing Re-IDentification (Re-ID) methods are highly dependent on precise bounding boxes that enable images to be aligned with each other. However, due to the challenging practical scenarios, current detection m... 详细信息
来源: 评论
Explore-Exploit Graph Traversal for Image Retrieval  32
Explore-Exploit Graph Traversal for Image Retrieval
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Chang, Cheng Yu, Guangwei Liu, Chundi Volkovs, Maksims Layer6 AI Toronto ON Canada
We propose a novel graph-based approach for image retrieval. Given a nearest neighbor graph produced by the global descriptor model, we traverse it by alternating between exploit and explore steps. The exploit step ma... 详细信息
来源: 评论
Gradient Matching Generative Networks for Zero-Shot Learning  32
Gradient Matching Generative Networks for Zero-Shot Learning
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Sariyildiz, Mert Bulent Cinbis, Ramazan Gokberk Bilkent Univ Dept Comp Engn Ankara Turkey Middle East Tech Univ METU Dept Comp Engn Ankara Turkey
Zero-shot learning (ZSL) is one of the most promising problems where substantial progress can potentially be achieved through unsupervised learning, due to distributional differences between supervised and zero-shot c... 详细信息
来源: 评论
Amodal Instance Segmentation with KINS Dataset  32
Amodal Instance Segmentation with KINS Dataset
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Qi, Lu Jiang, Li Liu, Shu Shen, Xiaoyong Jia, Jiaya Chinese Univ Hong Kong Hong Kong Peoples R China Tencent YouTu Lab Shenzhen Peoples R China
Amodal instance segmentation, a new direction of instance segmentation, aims to segment each object instance involving its invisible, occluded parts to imitate human ability. This task requires to reason objects' ... 详细信息
来源: 评论
FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery  32
FineGAN: Unsupervised Hierarchical Disentanglement for Fine-...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Singh, Krishna Kumar Ojha, Utkarsh Lee, Yong Jae Univ Calif Davis Davis CA 95616 USA
We propose FineGAN, a novel unsupervised GAN framework, which disentangles the background, object shape, and object appearance to hierarchically generate images of fine-grained object categories. To disentangle the fa... 详细信息
来源: 评论
PIEs: Pose Invariant Embeddings  32
PIEs: Pose Invariant Embeddings
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Ho, Chih-Hui Morgado, Pedro Persekian, Amir Vasconcelos, Nuno Univ Calif San Diego San Diego CA 92103 USA
The role of pose invariance in image recognition and retrieval is studied. A taxonomic classification of embeddings, according to their level of invariance, is introduced and used to clarify connections between existi... 详细信息
来源: 评论
Effective Aesthetics Prediction with Multi-level Spatially Pooled Features  32
Effective Aesthetics Prediction with Multi-level Spatially P...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Hosu, Vlad Goldluecke, Bastian Saupe, Dietmar Univ Konstanz Constance Germany
We propose an effective deep learning approach to aesthetics quality assessment that relies on a new type of pre-trained features, and apply it to the AVA data set, the currently largest aesthetics database. While all... 详细信息
来源: 评论
Few-Shot Learning with Localization in Realistic Settings  32
Few-Shot Learning with Localization in Realistic Settings
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wertheimer, Davis Hariharan, Bharath Cornell Univ Ithaca NY 14853 USA
Traditional recognition methods typically require large, artificially-balanced training classes, while few-shot learning methods are tested on artificially small ones. In contrast to both extremes, real world recognit... 详细信息
来源: 评论
A Theoretically Sound Upper Bound on the Triplet Loss for Improving the Efficiency of Deep Distance Metric Learning  32
A Theoretically Sound Upper Bound on the Triplet Loss for Im...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Do, Thanh-Toan Tran, Toan Reid, Ian Kumar, Vijay Hoang, Tuan Carneiro, Gustavo Univ Liverpool Liverpool Merseyside England Univ Adelaide Adelaide SA Australia PARC Palo Alto CA USA Singapore Univ Technol & Design Singapore Singapore
We propose a method that substantially improves the efficiency of deep distance metric learning based on the optimization of the triplet loss function. One epoch of such training process based on a naive optimization ... 详细信息
来源: 评论
Deep Dual Relation Modeling for Egocentric Interaction recognition  32
Deep Dual Relation Modeling for Egocentric Interaction Recog...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Li, Haoxin Cai, Yijun Zheng, Wei-Shi Sun Yat Sen Univ Sch Elect & Informat Technol Guangzhou Peoples R China Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China Peng Cheng Lab Shenzhen 518005 Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou Peoples R China
Egocentricinteractionrecognitionaims to recognize the camera wearer's interactionswith the interactorwho faces the camera wearer in egocentric videos. In such a humanhuman interactionanalysisproblem, it is crucial... 详细信息
来源: 评论