咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是201-210 订阅
排序:
Geometry-Aware Distillation for Indoor Semantic Segmentation  32
Geometry-Aware Distillation for Indoor Semantic Segmentation
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Jiao, Jianbo Wei, Yunchao Jie, Zequn Shi, Honghui Lau, Rynson Huang, Thomas S. Univ Oxford Dept Engn Sci Oxford OX1 2JD England UIUC Champaign IL USA Tencent AI Lab Bellevue WA USA IBM Res Armonk NY USA City Univ Hong Kong Hong Kong Peoples R China
It has been shown that jointly reasoning the 2D appearance and 3D information from RGB-D domains is beneficial to indoor scene semantic segmentation. However, most existing approaches require accurate depth map as inp... 详细信息
来源: 评论
Deep Sketch-Shape Hashing with Segmented 3D Stochastic Viewing  32
Deep Sketch-Shape Hashing with Segmented 3D Stochastic Viewi...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Chen, Jiaxin Qin, Jie Liu, Li Zhu, Fan Shen, Fumin Xie, Jin Shao, Ling Incept Inst Artificial Intelligence IIAI Abu Dhabi U Arab Emirates Univ Elect Sci & Technol China Chengdu Peoples R China Nanjing Univ Sci & Technol Nanjing Peoples R China
Sketch-based 3D shape retrieval has been extensively studied in recent works, most of which focus on improving the retrieval accuracy, whilst neglecting the efficiency. In this paper, we propose a novel framework for ... 详细信息
来源: 评论
Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression  32
Exploiting Kernel Sparsity and Entropy for Interpretable CNN...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Li, Yuchao Lin, Shaohui Zhang, Baochang Liu, Jianzhuang Doermann, David Wu, Yongjian Huang, Feiyue Ji, Rongrong Xiamen Univ Sch Informat Sci & Engn Dept Cognit Sci Fujian Key Lab Sensing & Comp Smart City Xiamen Peoples R China Peng Cheng Lab Shenzhen Peoples R China Beihang Univ Beijing Peoples R China Huawei Noahs Ark Lab Hong Kong Peoples R China SUNY Buffalo Buffalo NY USA Tencent Technol Shanghai Co Ltd BestImage Shanghai Peoples R China
Compressing convolutional neural networks (CNNs) has received ever-increasing research focus. However, most existing CNN compression methods do not interpret their inherent structures to distinguish the implicit redun... 详细信息
来源: 评论
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation  32
Sliced Wasserstein Discrepancy for Unsupervised Domain Adapt...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Lee, Chen-Yu Batra, Tanmay Baig, Mohammad Haris Ulbricht, Daniel Apple Inc Cupertino CA 95014 USA
In this work, we connect two distinct concepts for unsupervised domain adaptation: feature distribution alignment between domains by utilizing the task-specific decision boundary [57] and the Wasserstein metric [72]. ... 详细信息
来源: 评论
AdaCos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face Representations  32
AdaCos: Adaptively Scaling Cosine Logits for Effectively Lea...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zhang, Xiao Zhao, Rui Qiao, Yu Wang, Xiaogang Li, Hongsheng Chinese Univ Hong Kong CUHK SenseTime Joint Lab Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol SIAT SenseTime Joint Lab Shenzhen Peoples R China
The cosine-based softmax losses [21, 28, 39, 8] and their variants [40, 38, 7] achieve great success in deep learning based face recognition. However, hyperparameter settings in these losses have significant influence... 详细信息
来源: 评论
Iterative Reorganization with Weak Spatial Constraints: Solving Arbitrary Jigsaw Puzzles for Unsupervised Representation Learning  32
Iterative Reorganization with Weak Spatial Constraints: Solv...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wei, Chen Xie, Lingxi Ren, Xutong Xia, Yingda Su, Chi Liu, Jiaying Tian, Qi Yuille, Alan L. Peking Univ Beijing Peoples R China Johns Hopkins Univ Baltimore MD 21218 USA Huawei Inc Noahs Ark Lab Shenzhen Guangdong Peoples R China Kingsoft Cloud Beijing Peoples R China
Learning visual features from unlabeled image data is an important yet challenging task, which is often achieved by training a model on some annotation-free information. We consider spatial contexts, for which we solv... 详细信息
来源: 评论
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression  32
Generalized Intersection over Union: A Metric and A Loss for...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Rezatofighi, Hamid Tsoi, Nathan Gwak, JunYoung Sadeghian, Amir Reid, Ian Savarese, Silvio Stanford Univ Dept Comp Sci Stanford CA 94305 USA Univ Adelaide Sch Comp Sci Adelaide SA Australia Aibee Inc Palo Alto CA USA
Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters o... 详细信息
来源: 评论
Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning  32
Revisiting Local Descriptor based Image-to-Class Measure for...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Li, Wenbin Wang, Lei Xu, Jinglin Huo, Jing Gao, Yang Luo, Jiebo Nanjing Univ Nanjing Peoples R China Univ Wollongong Wollongong NSW Australia Northwestern Polytech Univ Xian Peoples R China Univ Rochester Rochester NY 14627 USA
Few-shot learning in image classification aims to learn a classifier to classify images when only few training examples are available for each class. Recent work has achieved promising classification performance, wher... 详细信息
来源: 评论
Hierarchy Denoising Recursive Autoencoders for 3D Scene Layout Prediction  32
Hierarchy Denoising Recursive Autoencoders for 3D Scene Layo...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Shi, Yifei Chang, Angel Xuan Wu, Zhelun Savva, Manolis Xu, Kai Natl Univ Def Technol Changsha Hunan Peoples R China Simon Fraser Univ Burnaby BC Canada Princeton Univ Princeton NJ 08544 USA
Indoor scenes exhibit rich hierarchical structure in 3D object layouts. Many tasks in 3D scene understanding can benefit from reasoning jointly about the hierarchical context of a scene, and the identities of objects.... 详细信息
来源: 评论
Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial Examples  32
Feature Distillation: DNN-Oriented JPEG Compression Against ...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Liu, Zihao Liu, Qi Liu, Tao Xu, Nuo Lin, Xue Wang, Yanzhi Wen, Wujie Florida Int Univ Miami FL 33199 USA Northeastern Univ Boston MA 02115 USA
Image compression-based approaches for defending against the adversarial-example attacks, which threaten the safety use of deep neural networks (DNN), have been investigated recently. However, prior works mainly rely ... 详细信息
来源: 评论