咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是241-250 订阅
排序:
UPSNet: A Unified Panoptic Segmentation Network  32
UPSNet: A Unified Panoptic Segmentation Network
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Xiong, Yuwen Liao, Renjie Zhao, Hengshuang Hu, Rui Bai, Min Yumer, Ersin Urtasun, Raquel Uber ATG Toronto ON Canada Univ Toronto Toronto ON Canada Chinese Univ Hong Kong Hong Kong Peoples R China
In this paper, we propose a unified panoptic segmentation network (UPSNet) for tackling the newly proposed panoptic segmentation task. On top of a single backbone residual network, we first design a deformable convolu... 详细信息
来源: 评论
Improving Transferability of Adversarial Examples with Input Diversity  32
Improving Transferability of Adversarial Examples with Input...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Xie, Cihang Zhang, Zhishuai Zhou, Yuyin Bai, Song Wang, Jianyu Ren, Zhou Yuille, Alan Johns Hopkins Univ Baltimore MD 21218 USA Univ Oxford Oxford England Baidu Res Beijing Peoples R China Wormpex AI Res Bellevue WA USA
Though CNNs have achieved the state-of-the-art performance on various vision tasks, they are vulnerable to adversarial examples - crafted by adding human-imperceptible perturbations to clean images. However, most of t... 详细信息
来源: 评论
PCAN: 3D Attention Map Learning Using Contextual Information for Point Cloud Based Retrieval  32
PCAN: 3D Attention Map Learning Using Contextual Information...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zhang, Wenxiao Xiao, Chunxia Wuhan Univ Sch Comp Sci Wuhan Peoples R China
Point cloud based retrieval for place recognition is an emerging problem in vision field. The main challenge is how to find an efficient way to encode the local features into a discriminative global descriptor. In thi... 详细信息
来源: 评论
Decorrelated Adversarial Learning for Age-Invariant Face recognition  32
Decorrelated Adversarial Learning for Age-Invariant Face Rec...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wang, Hao Gong, Dihong Li, Zhifeng Liu, Wei Tencent AI Lab Bellevue WA 98004 USA
There has been an increasing research interest in age-invariant face recognition. However, matching faces with big age gaps remains a challenging problem, primarily due to the significant discrepancy of face appearanc... 详细信息
来源: 评论
Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-grained Image recognition  32
Looking for the Devil in the Details: Learning Trilinear Att...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zheng, Heliang Fu, Jianlong Zha, Zheng-Jun Luo, Jiebo Univ Sci & Technol China Hefei Peoples R China Microsoft Res Beijing Peoples R China Univ Rochester Rochester NY USA
Learning subtle yet discriminative features (e.g., beak and eyes for a bird) plays a significant role in fine-grained image recognition. Existing attention-based approaches localize and amplify significant parts to le... 详细信息
来源: 评论
Point in, Box out: Beyond Counting Persons in Crowds  32
Point in, Box out: Beyond Counting Persons in Crowds
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Liu, Yuting Shi, Miaojing Zhao, Qijun Wang, Xiaofang Sichuan Univ Coll Comp Sci Chengdu Peoples R China Univ Rennes CNRS INRIA IRISA Rennes France
Modern crowd counting methods usually employ deep neural networks (DNN) to estimate crowd counts via density regression. Despite their significant improvements, the regression-based methods are incapable of providing ... 详细信息
来源: 评论
Quantization Networks  32
Quantization Networks
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Yang, Jiwei Shen, Xu Xing, Jun Tian, Xinmei Li, Houqiang Deng, Bing Huang, Jianqiang Hua, Xian-sheng Univ Sci & Technol China Dept Elect Engn & Informat Sci Hefei Peoples R China Alibaba Grp Damo Acad Hangzhou Peoples R China Univ Southern Calif Inst Creat Technol Los Angeles CA 90007 USA
Although deep neural networks are highly effective, their high computational and memory costs severely hinder their applications to portable devices. As a consequence, low-bit quantization,which converts a full-precis... 详细信息
来源: 评论
From recognition to Cognition: Visual Commonsense Reasoning  32
From Recognition to Cognition: Visual Commonsense Reasoning
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zellers, Rowan Bisk, Yonatan Farhadi, Ali Choi, Yejin Univ Washington Paul G Allen Sch Comp Sci & Engn Seattle WA 98195 USA Allen Inst Artificial Intelligence Seattle WA USA
Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states... 详细信息
来源: 评论
Interaction-and-Aggregation Network for Person Re-identification  32
Interaction-and-Aggregation Network for Person Re-identifica...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Hou, Ruibing Ma, Bingpeng Chang, Hong Gu, Xinqian Shan, Shiguang Chen, Xilin Chinese Acad Sci Inst Comp Technol Key Lab Intelligent Informat Proc Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China CAS Ctr Excellence Brain Sci & Intelligence Techn Shanghai 200031 Peoples R China
Person re-identification (reID) benefits greatly from deep convolutional neural networks (CNNs) which learn robust feature embeddings. However CNNs are inherently limited in modeling the law variations in person pose ... 详细信息
来源: 评论
Compressing Unknown Images with Product Quantizer for Efficient Zero-Shot Classification  32
Compressing Unknown Images with Product Quantizer for Effici...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Li, Jin Lan, Xuguang Liu, Yang Wang, Le Zheng, Nanning Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian Peoples R China Xi An Jiao Tong Univ Natl Engn Lab Visual Informat Proc & Applicat Xian Peoples R China Xidian Univ State Key Lab Integrated Serv Networks Xian Peoples R China
For Zero-Shot Learning (ZSL), the Nearest Neighbor (NN) search is generally conducted for classification, which may cause unacceptable computational complexity for large-scale datasets. To compress zero-shot classes b... 详细信息
来源: 评论