咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是21-30 订阅
排序:
Pedestrian detection with Autoregressive Network Phases  32
Pedestrian Detection with Autoregressive Network Phases
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Brazil, Garrick Liu, Xiaoming Michigan State Univ E Lansing MI 48824 USA
We present an autoregressive pedestrian detection framework with cascaded phases designed to progressively improve precision. The proposed framework utilizes a novel lightweight stackable decoder-encoder module which ... 详细信息
来源: 评论
Reasoning-RCNN: Unifying Adaptive Global Reasoning into Large-scale Object detection  32
Reasoning-RCNN: Unifying Adaptive Global Reasoning into Larg...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Xu, Hang Jiang, ChenHan Liang, Xiaodan Lin, Liang Li, Zhenguo Huawei Noahs Ark Lab Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China
In this paper, we address the large-scale object detection problem with thousands of categories, which poses severe challenges due to long-tail data distributions, heavy occlusions, and class ambiguities. However, the... 详细信息
来源: 评论
Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object detection for Autonomous Driving  32
Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap ...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wang, Yan Chao, Wei-Lun Garg, Divyansh Hariharan, Bharath Campbell, Mark Weinberger, Kilian Q. Cornell Univ Ithaca NY 14850 USA
3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approac... 详细信息
来源: 评论
Strong-Weak Distribution Alignment for Adaptive Object detection  32
Strong-Weak Distribution Alignment for Adaptive Object Detec...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Saito, Kuniaki Ushiku, Yoshitaka Harada, Tatsuya Saenko, Kate Boston Univ Boston MA 02215 USA Univ Tokyo Tokyo Japan RIKEN Tokyo Japan
We propose an approachfor unsupervised adaptation of object detectors from label-rich to label-poor domains which can significantly reduce annotation costs associated with detection. Recently, approaches that align di... 详细信息
来源: 评论
Towards Accurate One-Stage Object detection with AP-Loss  32
Towards Accurate One-Stage Object Detection with AP-Loss
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Chen, Kean Li, Jianguo Lin, Weiyao See, John Wang, Ji Duan, Lingyu Chen, Zhibo He, Changwei Zou, Junni Shanghai Jiao Tong Univ Shanghai Peoples R China Intel Labs Beijing Peoples R China Multimedia Univ Cyberjaya Malaysia Tencent YouTu Lab Shanghai Peoples R China Peking Univ Beijing Peoples R China
One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously, with the former suffering much from extreme foreground-background class imbalance issue due to the large n... 详细信息
来源: 评论
Moving Object detection under Discontinuous Change in Illumination Using Tensor Low-Rank and Invariant Sparse Decomposition  32
Moving Object Detection under Discontinuous Change in Illumi...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Shakeri, Moein Zhang, Hong Univ Alberta Dept Comp Sci Edmonton AB Canada
Although low-rank and sparse decomposition based methods have been successfully applied to the problem of moving object detection using structured sparsity-inducing norms, they are still vulnerable to significant illu... 详细信息
来源: 评论
Multi-Task Multi-Sensor Fusion for 3D Object detection  32
Multi-Task Multi-Sensor Fusion for 3D Object Detection
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Liang, Ming Yang, Bin Chen, Yun Hu, Rui Urtasun, Raquel Uber Adv Technol Grp Pittsburgh PA 15201 USA Univ Toronto Toronto ON Canada Uber AI Residency Program San Francisco CA USA
In this paper we propose to exploit multiple related tasks for accurate multi-sensor 3D object detection. Towards this goal we present an end-to-end learnable architecture that reasons about 2D and 3D object detection... 详细信息
来源: 评论
Exploring Object Relation in Mean Teacher for Cross-Domain detection  32
Exploring Object Relation in Mean Teacher for Cross-Domain D...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Cai, Qi Pan, Yingwei Ngo, Chong-Wah Tian, Xinmei Duan, Lingyu Yao, Ting Univ Sci & Technol China Hefei Peoples R China JD AI Res Beijing Peoples R China City Univ Hong Kong Kowloon Hong Kong Peoples R China Peking Univ Beijing Peoples R China
Rendering synthetic data (e.g., 3D CAD-rendered images) to generate annotations for learning deep models in vision tasks has attracted increasing attention in recent years. However, simply applying the models learnt o... 详细信息
来源: 评论
High-level Semantic Feature detection: A New Perspective for Pedestrian detection  32
High-level Semantic Feature Detection: A New Perspective for...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Liu, Wei Liao, Shengcai Ren, Weiqiang Hu, Weidong Yu, Yinan Natl Univ Def Technol Coll Elect Sci ATR Changsha Peoples R China Chinese Acad Sci Inst Automat CBSR Beijing Peoples R China Chinese Acad Sci Inst Automat NLPR Beijing Peoples R China Incept Inst Artificial Intelligence IIAI Abu Dhabi U Arab Emirates Horizon Robot Inc Beijing Peoples R China CASIA Beijing Peoples R China
Object detection generally requires sliding-window classifiers in tradition or anchor-based predictions in modern deep learning approaches. However, either of these approaches requires tedious configurations in window... 详细信息
来源: 评论
D2-Net: A Trainable CNN for Joint Description and detection of Local Features  32
D2-Net: A Trainable CNN for Joint Description and Detection ...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Dusmanu, Mihai Rocco, Ignacio Pajdla, Tomas Pollefeys, Marc Sivic, Josef Torii, Akihiko Sattler, Torsten PSL Res Univ CNRS ENS DI F-75005 Paris France Inria Rocquencourt France Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland CTU CIIRC Prague Czech Republic Microsoft Redmond WA USA Tokyo Inst Technol Tokyo Japan Chalmers Univ Technol Gothenburg Sweden
In this work we address the problem of finding reliable pixel-level correspondences under difficult imaging conditions. We propose an approach where a single convolutional neural network plays a dual role: It is simul... 详细信息
来源: 评论