咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是291-300 订阅
排序:
Composing Text and Image for Image Retrieval - An Empirical Odyssey  32
Composing Text and Image for Image Retrieval - An Empirical ...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Vo, Nam Jiang, Lu Sun, Chen Murphy, Kevin Li, Li-Jia Fei-Fei, Li Hays, James Georgia Tech Atlanta GA 30332 USA Google AI Mountain View CA USA Stanford Univ Stanford CA 94305 USA
In this paper, we study the task of image retrieval, where the input query is specified in the form of an image plus some text that describes desired modifications to the input image. For example, we may present an im... 详细信息
来源: 评论
Hybrid Task Cascade for Instance Segmentation  32
Hybrid Task Cascade for Instance Segmentation
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Chen, Kai Pang, Jiangmiao Wang, Jiaqi Xiong, Yu Li, Xiaoxiao Sun, Shuyang Feng, Wansen Liu, Ziwei Shi, Jianping Ouyang, Wanli Loy, Chen Change Lin, Dahua Chinese Univ Hong Kong Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China Zhejiang Univ Hangzhou Peoples R China Univ Sydney Sydney NSW Australia Nanyang Technol Univ Singapore Singapore
Cascade is a classic yet powerful architecture that has boosted performance on various tasks. However, how to introduce cascade to instance segmentation remains an open question. A simple combination of Cascade R-CNN ... 详细信息
来源: 评论
Weakly Supervised Video Moment Retrieval From Text Queries  32
Weakly Supervised Video Moment Retrieval From Text Queries
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Mithun, Niluthpol Chowdhury Paul, Sujoy Roy-Chowdhury, Amit K. Univ Calif Riverside Elect & Comp Engn Riverside CA 92521 USA
There have been a few recent methods proposed in text to video moment retrieval using natural language queries, but requiring full supervision during training. However, acquiring a large number of training videos with... 详细信息
来源: 评论
Meta-Transfer Learning for Few-Shot Learning  32
Meta-Transfer Learning for Few-Shot Learning
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Sun, Qianru Liu, Yaoyao Chua, Tat-Seng Schiele, Bernt Natl Univ Singapore Singapore Singapore Tianjin Univ Tianjin Peoples R China Saarland Informat Campus Max Planck Inst Informat Saarbrucken Germany NUS Singapore Singapore
Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner t... 详细信息
来源: 评论
Graph-Based Global Reasoning Networks  32
Graph-Based Global Reasoning Networks
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Chen, Yunpeng Rohrbach, Marcus Yan, Zhicheng Yan, Shuicheng Feng, Jiashi Kalantidis, Yannis Facebook AI Menlo Pk CA 94025 USA Natl Univ Singapore Singapore Singapore Qihoo 360 AI Inst Beijing Peoples R China
Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by conv... 详细信息
来源: 评论
Destruction and Construction Learning for Fine-grained Image recognition  32
Destruction and Construction Learning for Fine-grained Image...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Chen, Yue Bai, Yalong Zhang, Wei Mei, Tao JD AI Res Beijing Peoples R China
Delicate feature representation about object parts plays a critical role in fine-grained recognition. For example, experts can even distinguish fine-grained objects relying only on object parts according to profession... 详细信息
来源: 评论
ELASTIC: Improving CNNs with Dynamic Scaling Policies  32
ELASTIC: Improving CNNs with Dynamic Scaling Policies
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wang, Huiyu Kembhavi, Aniruddha Farhadi, Ali Yuille, Alan Rastegari, Mohammad Johns Hopkins Univ Baltimore MD 21218 USA PRIOR Allen Inst AI Seattle WA USA Univ Washington Seattle WA 98195 USA Xnor Ai Seattle WA USA
Scale variation has been a challenge from traditional to modern approaches in computer vision. Most solutions to scale issues have a similar theme: a set of intuitive and manually designed policies that are generic an... 详细信息
来源: 评论
Learning Cross-Modal Embeddings with Adversarial Networks for Cooking Recipes and Food Images  32
Learning Cross-Modal Embeddings with Adversarial Networks fo...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wang, Hao Sahoo, Doyen Liu, Chenghao Lim, Ee-peng Hoi, Steven C. H. Singapore Management Univ Singapore Singapore Salesforce Res Asia Singapore Singapore
Food computing is playing an increasingly important role in human daily life, and has found tremendous applications in guiding human behavior towards smart food consumption and healthy lifestyle. An important task und... 详细信息
来源: 评论
Adaptively Connected Neural Networks  32
Adaptively Connected Neural Networks
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wang, Guangrun Wang, Keze Lin, Liang Sun Yat Sen Univ Guangzhou Guangdong Peoples R China Univ Calif Los Angeles Los Angeles CA USA
This paper presents a novel adaptively connected neural network (ACNet) to improve the traditional convolutional neural networks (CNNs) in two aspects. First, ACNet employs a flexible way to switch global and local in... 详细信息
来源: 评论
Learning to Learn from Noisy Labeled Data  32
Learning to Learn from Noisy Labeled Data
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Li, Junnan Wong, Yongkang Zhao, Qi Kankanhalli, Mohan S. Natl Univ Singapore Singapore Singapore Univ Minnesota Minneapolis MN 55455 USA
Despite the success of deep neural networks (DNNs) in image classification tasks, the human-level performance relies on massive training data with high-quality manual annotations, which are expensive and time-consumin... 详细信息
来源: 评论