咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是61-70 订阅
排序:
Triangulation Learning Network: from Monocular to Stereo 3D Object detection  32
Triangulation Learning Network: from Monocular to Stereo 3D ...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Qin, Zengyi Wang, Jinglu Lu, Yan Tsinghua Univ Beijing Peoples R China Microsoft Res Beijing Peoples R China
In this paper, we study the problem of 3D object detection from stereo images, in which the key challenge is how to effectively utilize stereo information. Different from previous methods using pixel-level depth maps,... 详细信息
来源: 评论
On Exploring Undetermined Relationships for Visual Relationship detection  32
On Exploring Undetermined Relationships for Visual Relations...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zhan, Yibing Yu, Jun Yu, Ting Tao, Dacheng Hangzhou Dianzi Univ Sch Comp Sci & Technol Key Lab Complex Syst Modeling & Simulat Hangzhou Peoples R China Univ Sydney FEIT Sch Comp Sci UBTECH Sydney AI Ctr Darlington NSW 2008 Australia
In visual relationship detection, human-notated relationships can be regarded as determinate relationships. However there are still large amount of unlabeled data, such as object pairs with less significant relationsh... 详细信息
来源: 评论
Learning Shape-Aware Embedding for Scene Text detection  32
Learning Shape-Aware Embedding for Scene Text Detection
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Tian, Zhuotao Shu, Michelle Lyu, Pengyuan Li, Ruiyu Zhou, Chao Shen, Xiaoyong Jia, Jiaya Chinese Univ Hong Kong Hong Kong Peoples R China Johns Hopkins Univ Baltimore MD 21218 USA Tencent YouTu Lab Shenzhen Guangdong Peoples R China
We address the problem of detecting scene text in arbitrary shapes, which is a challenging task due to the high variety and complexity of the scene. We treat text detection as instance segmentation and propose a segme... 详细信息
来源: 评论
TACNet: Transition-Aware Context Network for Spatio-Temporal Action detection  32
TACNet: Transition-Aware Context Network for Spatio-Temporal...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Song, Lin Zhang, Shiwei Yu, Gang Sun, Hongbin Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian Peoples R China Huazhong Univ Sci & Technol Artificial Intelligence & Automat Wuhan Peoples R China Megvii Inc Face Beijing Peoples R China
Current state-of-the-art approaches for spatio-temporal action detection have achieved impressive results but remain unsatisfactoryfor temporal extent detection. The main reason comes from that, there are some ambiguo... 详细信息
来源: 评论
Joint Manifold Diffusion for Combining Predictions on Decoupled Observations  32
Joint Manifold Diffusion for Combining Predictions on Decoup...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Kim, Kwang In Chang, Hyung Jin UNIST Ulsan South Korea Univ Birmingham Birmingham W Midlands England
We present a new predictor combination algorithm that improves a given task predictor based on potentially relevant reference predictors. Existing approaches are limited in that, to discover the underlying task depend... 详细信息
来源: 评论
Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning  32
Multi-Similarity Loss with General Pair Weighting for Deep M...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Wang, Xun Han, Xintong Huang, Weiling Dong, Dengke Scott, Matthew R. Malong Technol Shenzhen Peoples R China Shenzhen Malong Artificial Intelligence Res Ctr Shenzhen Peoples R China
A family of loss functions built on pair-based computation have been proposed in the literature which provide a myriad of solutions for deep metric learning. In this paper we provide a general weighting framework for ... 详细信息
来源: 评论
Progressive Feature Alignment for Unsupervised Domain Adaptation  32
Progressive Feature Alignment for Unsupervised Domain Adapta...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Chen, Chaoqi Xie, Weiping Huang, Wenbing Rong, Yu Ding, Xinghao Huang, Yue Xu, Tingyang Huang, Junzhou Xiamen Univ Fujian Key Lab Sensing & Comp Smart City Sch Informat Sci & Engn Xiamen Peoples R China Tencent AI Lab Bellevue WA 98004 USA
Unsupervised domain adaptation (UDA) transfers knowledge from a label-rich source domain to a fullyunlabeled target domain. To tackle this task, recent approaches resort to discriminative domain transfer in virtue of ... 详细信息
来源: 评论
Learning to Transfer Examples for Partial Domain Adaptation  32
Learning to Transfer Examples for Partial Domain Adaptation
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Cao, Zhangjie You, Kaichao Long, Mingsheng Wang, Jianmin Yang, Qiang Tsinghua Univ KLiss MOE Beijing Peoples R China Tsinghua Univ BNRist Beijing Peoples R China Tsinghua Univ Sch Software Beijing Peoples R China Tsinghua Univ Res Ctr Big Data Beijing Peoples R China Beijing Key Lab Ind Big Data Syst & Applicat Beijing Peoples R China Hong Kong Univ Sci & Technol Hong Kong Peoples R China
Domain adaptation is critical for learning in new and unseen environments. With domain adversarial training, deep networks can learn disentangled and transferable features that effectively diminish the dataset shift b... 详细信息
来源: 评论
Deep RNN Framework for Visual Sequential Applications  32
Deep RNN Framework for Visual Sequential Applications
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Pang, Bo Zha, Kaiwen Cao, Hanwen Shi, Chen Lu, Cewu Shanghai Jiao Tong Univ Shanghai Peoples R China Shanghai Jiao Tong Univ Dept Comp Sci & Engn MoE Key Lab Artificial Intelligence AI Inst Shanghai Peoples R China
Extracting temporal and representation features efficiently plays a pivotal role in understanding visual sequence information. To deal with this, we propose a new recurrent neural framework that can be stacked deep ef... 详细信息
来源: 评论
Local Features and Visual Words Emerge in Activations  32
Local Features and Visual Words Emerge in Activations
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Simeoni, Oriane Avrithis, Yannis Chum, Ondrej Univ Rennes INRIA CNRS IRISA Rennes France Czech Tech Univ VRG FEE Prague Czech Republic
We propose a novel method of deep spatial matching (DSM) for image retrieval. Initial ranking is based on image descriptors extracted from convolutional neural network activations by global pooling, as in recent state... 详细信息
来源: 评论