咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是71-80 订阅
排序:
Learning to Cluster Faces on an Affinity Graph  32
Learning to Cluster Faces on an Affinity Graph
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Yang, Lei Zhan, Xiaohang Chen, Dapeng Yan, Junjie Loy, Chen Change Lin, Dahua Chinese Univ Hong Kong CUHK SenseTime Joint Lab Hong Kong Peoples R China SenseTime Grp Ltd Hong Kong Peoples R China Nanyang Technol Univ Singapore Singapore
Face recognition sees remarkable progress in recent years, and its performance has reached a very high level. Taking it to a next level requires substantially larger data, which would involve prohibitive annotation co... 详细信息
来源: 评论
ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network  32
ESPNetv2: A Light-weight, Power Efficient, and General Purpo...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Mehta, Sachin Rastegari, Mohammad Shapiro, Linda Hajishirzi, Hannaneh Univ Washington Seattle WA 98195 USA Allen Inst AI AI2 Seattle WA USA XNOR AI Seattle WA USA
We introduce a light-weight, power efficient, and general purpose convolutional neural network, ESPNetv2, for modeling visual and sequential data. Our network uses group point-wise and depth-wise dilated separable con... 详细信息
来源: 评论
Informative Object Annotations: Tell Me Something I Don't Know  32
Informative Object Annotations: Tell Me Something I Don't Kn...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Bracha, Lior Chechik, Gal Bar Ilan Univ Ramat Gan Israel Bar Ilan Univ NVIDIA Res Ramat Gan Israel
Capturing the interesting components of an image is a key aspect of image understanding. When a speaker annotates an image, selecting labels that are informative greatly depends on the prior knowledge of a prospective... 详细信息
来源: 评论
Snapshot Distillation: Teacher-Student Optimization in One Generation  32
Snapshot Distillation: Teacher-Student Optimization in One G...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Yang, Chenglin Xie, Lingxi Su, Chi Yuille, Alan L. Johns Hopkins Univ Baltimore MD 21218 USA Huawei Inc Noahs Ark Lab Shenzhen Guangdong Peoples R China Kingsoft Cloud Beijing Peoples R China
Optimizing a deep neural network is a fundamental task in computer vision, yet direct training methods often suffer from over-fitting. Teacher-student optimization aims at providing complementary cues from a model tra... 详细信息
来源: 评论
ArcFace: Additive Angular Margin Loss for Deep Face recognition  32
ArcFace: Additive Angular Margin Loss for Deep Face Recognit...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Deng, Jiankang Guo, Jia Xue, Niannan Zafeiriou, Stefanos Imperial Coll London London England InsightFace London England FaceSoft London England
One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. C... 详细信息
来源: 评论
Modularized Textual Grounding for Counterfactual Resilience  32
Modularized Textual Grounding for Counterfactual Resilience
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Fang, Zhiyuan Kong, Shu Fowlkes, Charless Yang, Yezhou Arizona State Univ Tempe AZ 85287 USA Univ Calif Irvine Irvine CA 92717 USA
Computer Vision applications often require a textual grounding module with precision, interpretability, and resilience to counterfactual inputs/queries. To achieve high grounding precision, current textual grounding m... 详细信息
来源: 评论
Attribute-Driven Feature Disentangling and Temporal Aggregation for Video Person Re-Identification  32
Attribute-Driven Feature Disentangling and Temporal Aggregat...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zhao, Yiru Shen, Xu Jin, Zhongming Lu, Hongtao Hua, Xian-sheng Shanghai Jiao Tong Univ MoE Key Lab Artificial Intelligence Dept Comp Sci & Engn Key Lab Shanghai Educ Commiss Intelligent Interac Shanghai Peoples R China Alibaba Grp Alibaba Damo Acad Hangzhou Peoples R China
Video-based person re-identification plays an important role in surveillance video analysis, expanding image-based methods by learning features of multiple frames. Most existing methods fuse features by temporal avera... 详细信息
来源: 评论
MaxpoolNMS: Getting Rid of NMS Bottlenecks in Two-Stage Object Detectors  32
MaxpoolNMS: Getting Rid of NMS Bottlenecks in Two-Stage Obje...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Cai, Lile Zhao, Bin Wang, Zhe Lin, Jie Foo, Chuan Sheng Aly, Mohamed Sabry Chandrasekhar, Vijay ASTAR Inst Infocomm Res Singapore Singapore ASTAR Inst Microelect Singapore Singapore Nanyang Technol Univ Singapore Singapore
Modern convolutional object detectors have improved the detection accuracy significantly, which in turn inspired the development of dedicated hardware accelerators to achieve real-time performance by exploiting inhere... 详细信息
来源: 评论
The Pros and Cons: Rank-aware Temporal Attention for Skill Determination in Long Videos  32
The Pros and Cons: Rank-aware Temporal Attention for Skill D...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Doughty, Hazel Mayol-Cuevas, Walterio Damen, Dima Univ Bristol Bristol Avon England
We present a new model to determine relative skill from long videos, through learnable temporal attention modules. Skill determination is formulated as a ranking problem, making it suitable for common and generic task... 详细信息
来源: 评论
Seamless Scene Segmentation  32
Seamless Scene Segmentation
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Porzi, Lorenzo Bulo, Samuel Rota Colovic, Aleksander Kontschieder, Peter Mapillary Res Malmo Sweden
In this work we introduce a novel, CNN-based architecture that can be trained end-to-end to deliver seamless scene segmentation results. Our goal is to predict consistent semantic segmentation and detection results by... 详细信息
来源: 评论