咨询与建议

限定检索结果

文献类型

  • 383 篇 会议

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 383 篇 计算机科学与技术...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 383 篇 recognition: det...
  • 382 篇 categorization
  • 380 篇 retrieval
  • 200 篇 deep learning
  • 81 篇 representation l...
  • 38 篇 vision applicati...
  • 35 篇 segmentation
  • 35 篇 scene analysis a...
  • 27 篇 grouping and sha...
  • 24 篇 gesture
  • 24 篇 face
  • 23 篇 and body pose
  • 23 篇 datasets and eva...
  • 20 篇 3d from multivie...
  • 19 篇 video analytics
  • 17 篇 statistical lear...
  • 17 篇 vision + languag...
  • 16 篇 optimization met...
  • 13 篇 robotics + drivi...
  • 13 篇 others

机构

  • 16 篇 univ chinese aca...
  • 15 篇 chinese univ hon...
  • 11 篇 sun yat sen univ...
  • 11 篇 sensetime res pe...
  • 11 篇 peng cheng lab p...
  • 9 篇 huawei noahs ark...
  • 9 篇 carnegie mellon ...
  • 8 篇 univ sci & techn...
  • 8 篇 tsinghua univ pe...
  • 8 篇 johns hopkins un...
  • 7 篇 facebook ai res ...
  • 7 篇 sun yat sen univ...
  • 7 篇 minist educ key ...
  • 7 篇 nanyang technol ...
  • 6 篇 cas ctr excellen...
  • 6 篇 hong kong univ s...
  • 6 篇 tencent youtu la...
  • 6 篇 tech univ munich...
  • 6 篇 univ calif berke...
  • 6 篇 univ texas austi...

作者

  • 7 篇 zheng wei-shi
  • 7 篇 wang xiaogang
  • 7 篇 lin dahua
  • 6 篇 ji rongrong
  • 6 篇 yan junjie
  • 5 篇 grauman kristen
  • 5 篇 lin liang
  • 5 篇 doermann david
  • 5 篇 shao ling
  • 5 篇 liang xiaodan
  • 4 篇 shan shiguang
  • 4 篇 zhang baochang
  • 4 篇 girshick ross
  • 4 篇 loy chen change
  • 4 篇 chen xilin
  • 4 篇 rastegari mohamm...
  • 4 篇 tian qi
  • 4 篇 lu cewu
  • 4 篇 ouyang wanli
  • 4 篇 schiele bernt

语言

  • 383 篇 英文
检索条件"主题词=Recognition: Detection"
383 条 记 录,以下是81-90 订阅
排序:
P2SGrad: Refined Gradients for Optimizing Deep Face Models  32
P2SGrad: Refined Gradients for Optimizing Deep Face Models
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Zhang, Xiao Zhao, Rui Yan, Junjie Gao, Mengya Qiao, Yu Wang, Xiaogang Li, Hongsheng Chinese Univ Hong Kong CUHK SenseTime Joint Lab Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol SIAT SenseTime Joint Lab Shenzhen Peoples R China
Cosine-based softmax losses [20, 29, 27, 3] significantly improve the performance of deep face recognition networks. However, these losses always include sensitive hyper-parameters which can make training process unst... 详细信息
来源: 评论
MnasNet: Platform-Aware Neural Architecture Search for Mobile  32
MnasNet: Platform-Aware Neural Architecture Search for Mobil...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Tan, Mingxing Chen, Bo Pang, Ruoming Vasudevan, Vijay Sandier, Mark Howard, Andrew Le, Quoc V. Google Brain Mountain View CA 94043 USA Google Inc Menlo Pk CA USA
Designing convolutional neural networks (CNN) for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant efforts have been dedicated to design and impro... 详细信息
来源: 评论
Separate to Adapt: Open Set Domain Adaptation via Progressive Separation  32
Separate to Adapt: Open Set Domain Adaptation via Progressiv...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Liu, Hong Cao, Zhangjie Long, Mingsheng Wang, Jianmin Yang, Qiang Tsinghua Univ MOE KLiss BNRistSch Software Beijing Peoples R China Tsinghua Univ Res Ctr Big Data Beijing Peoples R China Beijing Key Lab Ind Big Data Syst & Applicat Beijing Peoples R China Hong Kong Univ Sci & Technol Hong Kong Peoples R China
Domain adaptation has become a resounding success in leveraging labeled data from a source domain to learn an accurate classifier for an unlabeled target domain. When deployed in the wild, the target domain usually co... 详细信息
来源: 评论
Translate-to-Recognize Networks for RGB-D Scene recognition  32
Translate-to-Recognize Networks for RGB-D Scene Recognition
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Du, Dapeng Wang, Limin Wang, Huiling Zhao, Kai Wu, Gangshan Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China
Cross-modal transfer is helpful to enhance modality-specific discriminative power for scene recognition. To this end, this paper presents a unified framework to integrate the tasks of cross-modal translation and modal... 详细信息
来源: 评论
Bag of Tricks for Image Classification with Convolutional Neural Networks  32
Bag of Tricks for Image Classification with Convolutional Ne...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: He, Tong Zhang, Zhi Zhang, Hang Zhang, Zhongyue Xie, Junyuan Li, Mu Amazon Web Serv Seattle WA 98109 USA
Much of the recent progress made in image classification research can be credited to training procedure refinements, such as changes in data augmentations and optimization methods. In the literature, however, most ref... 详细信息
来源: 评论
Re-ranking via Metric Fusion for Object Retrieval and Person Re-identification  32
Re-ranking via Metric Fusion for Object Retrieval and Person...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Bai, Song Tang, Peng Torr, Philip H. S. Latecki, Longin Jan Univ Oxford Oxford England Huazhong Univ Sci & Technol Wuhan Hubei Peoples R China Temple Univ Philadelphia PA 19122 USA
This work studies the unsupervised re-ranking procedure for object retrieval and person re-identification with a specific concentration on an ensemble of multiple metrics (or similarities). While the re-ranking step i... 详细信息
来源: 评论
Learning a Deep ConvNet for Multi-label Classification with Partial Labels  32
Learning a Deep ConvNet for Multi-label Classification with ...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Durand, Thibaut Mehrasa, Nazanin Mori, Greg Borealis AI Toronto ON Canada Simon Fraser Univ Burnaby BC Canada
Deep ConvNets have shown great performance for single-label image classification (e.g. ImageNet), but it is necessary to move beyond the single-label classification task because pictures of everyday life are inherentl... 详细信息
来源: 评论
Neural Sequential Phrase Grounding (SeqGROUND)  32
Neural Sequential Phrase Grounding (SeqGROUND)
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Dogan, Pelin Sigal, Leonid Gross, Markus Swiss Fed Inst Technol Zurich Switzerland Univ British Columbia Vancouver BC Canada Vector Inst Toronto ON Canada Disney Res Zurich Switzerland
We propose an end-to-end approach for phrase grounding in images. Unlike prior methods that typically attempt to ground each phrase independently by building an imagetext embedding, our architecture formulates groundi... 详细信息
来源: 评论
Data-Driven Neuron Allocation for Scale Aggregation Networks  32
Data-Driven Neuron Allocation for Scale Aggregation Networks
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Li, Yi Kuang, Zhanghui Chen, Yimin Zhang, Wayne SenseTime Hong Kong Peoples R China
Successful visual recognition networks benefit from aggregating information spanning from a wide range of scales. Previous research has investigated information fusion of connected layers or multiple branches in a blo... 详细信息
来源: 评论
ToothNet: Automatic Tooth Instance Segmentation and Identification from Cone Beam CT Images  32
ToothNet: Automatic Tooth Instance Segmentation and Identifi...
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR)
作者: Cui, Zhiming Li, Changjian Wang, Wenping Univ Hong Kong Hong Kong Peoples R China
This paper proposes a method that uses deep convolutional neural networks to achieve automatic and accurate tooth instance segmentation and identification from CBCT (cone beam CT) images for digital dentistry. The cor... 详细信息
来源: 评论