咨询与建议

限定检索结果

文献类型

  • 200 篇 会议
  • 168 篇 期刊文献
  • 2 篇 学位论文

馆藏范围

  • 370 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 319 篇 工学
    • 263 篇 计算机科学与技术...
    • 78 篇 软件工程
    • 72 篇 电气工程
    • 59 篇 信息与通信工程
    • 37 篇 控制科学与工程
    • 15 篇 机械工程
    • 12 篇 材料科学与工程(可...
    • 10 篇 电子科学与技术(可...
    • 10 篇 网络空间安全
    • 6 篇 仪器科学与技术
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 3 篇 土木工程
    • 3 篇 食品科学与工程(可...
    • 3 篇 安全科学与工程
  • 66 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
    • 9 篇 工商管理
    • 3 篇 公共管理
  • 35 篇 理学
    • 18 篇 数学
    • 9 篇 物理学
    • 9 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 4 篇 化学
    • 3 篇 系统科学
  • 13 篇 教育学
    • 11 篇 教育学
    • 5 篇 心理学(可授教育学...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 5 篇 医学
  • 3 篇 文学
    • 2 篇 新闻传播学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 艺术学

主题

  • 370 篇 recommendation a...
  • 82 篇 collaborative fi...
  • 20 篇 deep learning
  • 20 篇 knowledge graph
  • 15 篇 recommender syst...
  • 11 篇 attention mechan...
  • 10 篇 data mining
  • 9 篇 collaborative fi...
  • 9 篇 machine learning
  • 9 篇 social network
  • 9 篇 recommendation s...
  • 8 篇 clustering
  • 8 篇 big data
  • 8 篇 similarity
  • 8 篇 e-commerce
  • 8 篇 feature extracti...
  • 7 篇 cold start
  • 6 篇 recommender syst...
  • 6 篇 similarity calcu...
  • 5 篇 matrix factoriza...

机构

  • 3 篇 state grid xinji...
  • 3 篇 nanjing univ pos...
  • 3 篇 state grid xinji...
  • 3 篇 ningbo city coll...
  • 3 篇 sun yat sen univ...
  • 3 篇 hunan univ coll ...
  • 3 篇 zhejiang busines...
  • 2 篇 school of artifi...
  • 2 篇 univ queensland ...
  • 2 篇 artillery comman...
  • 2 篇 northeastern uni...
  • 2 篇 guilin univ tech...
  • 2 篇 school of inform...
  • 2 篇 shaoyang univ pr...
  • 2 篇 fuzhou univ sch ...
  • 2 篇 tianjin universi...
  • 2 篇 donghua univ sch...
  • 2 篇 heilongjiang uni...
  • 2 篇 harbin engn univ...
  • 2 篇 henan univ sci &...

作者

  • 6 篇 yang yang
  • 4 篇 yu yonghong
  • 4 篇 zhang li
  • 4 篇 wang yong
  • 3 篇 wang xingwei
  • 3 篇 chang guiran
  • 3 篇 wang jian
  • 3 篇 shu fei
  • 3 篇 chen shuting
  • 3 篇 yin hang
  • 3 篇 dong xuetao
  • 3 篇 wang chang-dong
  • 3 篇 xie xiaolan
  • 3 篇 deng jiangzhou
  • 2 篇 jiang hui
  • 2 篇 feng chenyuan
  • 2 篇 mi zhenqiang
  • 2 篇 liu yunna
  • 2 篇 zhao changwei
  • 2 篇 zhou ningning

语言

  • 355 篇 英文
  • 11 篇 其他
  • 4 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"主题词=Recommendation algorithm"
370 条 记 录,以下是201-210 订阅
排序:
An Artificial Intelligence Model recommendation Method for Power Dispatching Scenario Based on Knowledge Graph and Scene Label Matching  11
An Artificial Intelligence Model Recommendation Method for P...
收藏 引用
11th Joint International Information Technology and Artificial Intelligence Conference, ITAIC 2023
作者: Deng, Yutian Xiao, Dajun Yu, Fang Zhang, Hong China Electric Power Research Institute Nanjing China Central China Branch of State Grid Corporation of China Wuhan China
In the field of power dispatching, more and more tasks have adopted artificial intelligence solutions, and related research and literature are also showing an exponential explosive growth. In order to solve the proble... 详细信息
来源: 评论
A conditional random field recommendation method based on tripartite graph
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 第PartC期238卷
作者: Wang, Xin Han, Lixin Li, Jingxian Yan, Hong Hohai Univ Sch Comp & Informat Nanjing 211106 Peoples R China Jinling Inst Technol Sch Software Engn Nanjing 211169 Peoples R China City Univ Hong Kong Dept Elect Engn Hong Kong 999077 Peoples R China
Recommender System (RS) has generated widespread attention with the aim of expanding different items. Among graph-based recommendation methods, the tripartite graph can better manage data sparsity and cold start, whil... 详细信息
来源: 评论
Application of the algorithm of separating graph neural recommendation model in health information system
收藏 引用
JOURNAL OF DECISION SYSTEMS 2021年
作者: Huang, Jie Hunan Prov Engn Res Ctr Aircraft Maintenance Changsha 410124 Hunan Peoples R China Changsha Aeronaut Vocat & Tech Coll Changsha Peoples R China
In order to solve the problem of sparse and unbalanced data in recommendation system, a separable graph neural recommendation model (SGNR) based on graph information aggregation was proposed. It models the group chara... 详细信息
来源: 评论
Improved Hybrid Collaborative Fitering algorithm Based on Spark Platform
收藏 引用
Wuhan University Journal of Natural Sciences 2023年 第5期28卷 451-460页
作者: YOU Zhen HU Hongwen WANG Yutao XUE Jinyun YI Xinwu College of Computer Information Engineering Jiangxi Normal UniversityNanchang 330022JiangxiChina National-Level International Science and Technology Cooperation Base of Networked Supporting Software Nanchang 330022JiangxiChina
An improved Hybrid Collaborative Filtering algorithm(H-CF)is proposed,addressing the issues of data sparsity,low recommendation accuracy,and poor scalability present in traditional collaborative filtering *** core of ... 详细信息
来源: 评论
Multi-head Self-attention recommendation Model based on Feature Interaction Enhancement
Multi-head Self-attention Recommendation Model based on Feat...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Yin, Yunfei Huang, Caihao Sun, Jingqin Huang, Faliang Chongqing Univ Coll Comp Sci Chongqing Peoples R China Nanning Normal Univ Sch Comp & Informat Engn Nanning Peoples R China
In the recommendation system, click-through rate (CTR) prediction is a popular research direction. Aiming at the problem of excessive compression of features in Factorization Machine (FM) and its variant models, a rec... 详细信息
来源: 评论
Deep recommendation Model Combining Long-and Short-Term Interest Preferences
收藏 引用
IEEE ACCESS 2021年 9卷 166455-166464页
作者: Niu, Lushuai Peng, Yan Liu, Yimao Sichuan Univ Sci & Engn Coll Automat & Informat Engn Yibin Peoples R China
The existing sequential recommendation algorithms cannot effectively capture and solve the problems such as the dynamic preferences of users over time. This paper proposes a deep recommendation model CLSR (Combines Lo... 详细信息
来源: 评论
融合多粒度社团特征与快速并行矩阵分解的复杂网络个性化推荐算法
收藏 引用
运筹与模糊学 2025年 第2期15卷 443-459页
作者: 李贵平 艾均 苏湛 上海理工大学光电信息与计算机工程学院 上海
针对复杂网络环境下个性化推荐系统面临的数据稀疏性、计算效率及用户偏好动态性等挑战,本文提出了一种融合多粒度社团特征与快速并行矩阵分解的推荐算法。该算法首先构建基于用户相似度的复杂网络,并引入改进的社团检测算法实现多粒... 详细信息
来源: 评论
The filter bubble generated by artificial intelligence algorithms and the network dynamics of collective polarization on YouTube: the case of South Korea
收藏 引用
ASIAN JOURNAL OF COMMUNICATION 2024年 第2期34卷 195-212页
作者: Park, Han Woo Park, Sejung YeungNam Univ Dept Media & Commun Interdisciplinary Grad Programs Digital Convergenc Gyongsan South Korea Pukyong Natl Univ Div Global & Interdisciplinary Studies Busan South Korea Pukyong Natl Univ Div Global & Interdisciplinary Studies 45 Yongso ro Busan 48513 South Korea
This study examined the role of the 'filter bubble,' an algorithm-mediated YouTube video suggestion system, in political polarization and the presence of echo chamber patterns in public engagement. We examined... 详细信息
来源: 评论
Analyzing User Engagement with TikTok's Short Format Video recommendations using Data Donations  24
Analyzing User Engagement with TikTok's Short Format Video R...
收藏 引用
ACM CHI Conference on Human Factors in Computing Sytems (CHI)
作者: Zannettou, Savvas Nemes-Nemeth, Olivia Ayalon, Oshrat Goetzen, Angelica Gummadi, Krishna P. Redmiles, Elissa M. Roesner, Franziska Delft Univ Technol Delft Netherlands Max Planck Inst Informat Saarbrucken Germany Univ Haifa Haifa Israel Georgetown Univ Washington DC USA Univ Washington Seattle WA USA
Short-format videos have exploded on platforms like TikTok, Instagram, and YouTube. Despite this, the research community lacks large-scale empirical studies into how people engage with short-format videos and the role... 详细信息
来源: 评论
Personalized scientific and technological literature resources recommendation based on deep learning
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021年 第2期41卷 2981-2996页
作者: Zhang, Jin Gu, Fu Ji, Yangjian Guo, Jianfeng Zhejiang Univ Dept Ind & Syst Engn Hangzhou Peoples R China Zhejiang Univ Ctr Engn Management Polytech Inst Hangzhou Peoples R China Zhejiang Univ Natl Inst Innovat Management Hangzhou Peoples R China Chinese Acad Sci Inst Sci Beijing Peoples R China Chinese Acad Sci Inst Dev Beijing Peoples R China Univ Chinese Acad Sci Sch Publ Policy & Management Beijing Peoples R China
To enable a quick and accurate access of targeted scientific and technological literature from massive stocks, here a deep content-based collaborative filtering method, namely DeepCCF, for personalized scientific and ... 详细信息
来源: 评论