咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 4 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 计算机科学与技术...
    • 2 篇 电气工程
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 4 篇 reconstruction-b...
  • 2 篇 anomaly detectio...
  • 2 篇 unsupervised lea...
  • 1 篇 classification t...
  • 1 篇 multivariate tim...
  • 1 篇 unified models
  • 1 篇 dual reconstruct...
  • 1 篇 discrepancy-base...
  • 1 篇 adversarial-base...
  • 1 篇 learning data
  • 1 篇 autoencoder
  • 1 篇 neural network
  • 1 篇 attention-based ...
  • 1 篇 visual unsupervi...
  • 1 篇 image classifica...
  • 1 篇 deep unsupervise...
  • 1 篇 taxonomy
  • 1 篇 computer vision
  • 1 篇 feedback learnin...
  • 1 篇 image anomaly de...

机构

  • 1 篇 univ tabriz comp...
  • 1 篇 islamic azad uni...
  • 1 篇 milestone syst a...
  • 1 篇 aalborg univ aal...
  • 1 篇 guizhou univ col...
  • 1 篇 univ tehran tehr...
  • 1 篇 guizhou power gr...
  • 1 篇 institute of inf...

作者

  • 1 篇 seydi vahid
  • 1 篇 razavi seyed nas...
  • 1 篇 salehpour pedram
  • 1 篇 zheng long
  • 1 篇 nasrollahi kamal
  • 1 篇 hosseini reshad
  • 1 篇 moeslund thomas ...
  • 1 篇 li shuyun
  • 1 篇 lu yu
  • 1 篇 li wen
  • 1 篇 wang weidong
  • 1 篇 madadi yeganeh
  • 1 篇 zhang chune
  • 1 篇 sefati seyedeh t...
  • 1 篇 wang rongxiang
  • 1 篇 li zhi

语言

  • 4 篇 英文
检索条件"主题词=Reconstruction-based methods"
4 条 记 录,以下是1-10 订阅
排序:
Enhancing autoencoder models for multivariate time series anomaly detection: the role of noise and data amount
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第4期81卷 1-27页
作者: Sefati, Seyedeh Tina Razavi, Seyed Naser Salehpour, Pedram Univ Tabriz Comp Engn Tabriz Iran
Unsupervised anomaly detection in multivariate time series is important in many applications including cyber intrusion detection and medical diagnostics. Both traditional and supervised techniques had limitations due ... 详细信息
来源: 评论
SRAD: A spatially-aware reconstruction network with anomaly suppression for multi-class anomaly detection
收藏 引用
NEUROCOMPUTING 2025年 637卷
作者: Li, Shuyun Li, Zhi Wang, Rongxiang Wang, Weidong Zheng, Long Lu, Yu Guizhou Univ Coll Comp Sci & Technol State Key Lab Publ Big Data Guiyang 550025 Peoples R China Guizhou Power Grid Co Guiyang 550025 Peoples R China
reconstruction-based methods have achieved remarkable outcomes in unsupervised image anomaly detection by training separate models for different categories. However, when it comes to a practical unified model, these m... 详细信息
来源: 评论
DN-DR: Discriminative Network with Dual reconstruction for Image Anomaly Detection
DN-DR: Discriminative Network with Dual Reconstruction for I...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Li, Wen Zhang, Chune Institute of Information Science Beijing Jiaotong University Beijing China
One mainstream of image anomaly detection is based on reconstruction. Such methods still struggle with diverse anomalies, such as near-in-distribution or deformed types. To address the challenge, we propose a Discrimi... 详细信息
来源: 评论
Deep visual unsupervised domain adaptation for classification tasks: a survey
收藏 引用
IET IMAGE PROCESSING 2020年 第14期14卷 3283-3299页
作者: Madadi, Yeganeh Seydi, Vahid Nasrollahi, Kamal Hosseini, Reshad Moeslund, Thomas B. Islamic Azad Univ Fac Tech & Engn Dept Comp Engn South Tehran Branch Tehran Iran Univ Tehran Tehran Iran Aalborg Univ Aalborg Denmark Milestone Syst AS Copenhagen Denmark
Learning methods are challenged when there is not enough labelled data. It gets worse when the existing learning data have different distributions in different domains. To deal with such situations, deep unsupervised ... 详细信息
来源: 评论