咨询与建议

限定检索结果

文献类型

  • 14 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 9 篇 电气工程
    • 8 篇 计算机科学与技术...
    • 4 篇 控制科学与工程
    • 2 篇 石油与天然气工程
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 交通运输工程
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 数学

主题

  • 21 篇 reinforcement le...
  • 7 篇 learning (artifi...
  • 3 篇 reinforcement le...
  • 2 篇 target tracking
  • 2 篇 gold
  • 2 篇 adaptive control
  • 1 篇 approximate dyna...
  • 1 篇 q-learning algor...
  • 1 篇 model based cont...
  • 1 篇 network design p...
  • 1 篇 continuous actio...
  • 1 篇 bottom-up learni...
  • 1 篇 multiple concurr...
  • 1 篇 legged locomotio...
  • 1 篇 cyber attack det...
  • 1 篇 model predictive...
  • 1 篇 scheduling param...
  • 1 篇 good tracking pe...
  • 1 篇 video streaming
  • 1 篇 actor-critic met...

机构

  • 1 篇 tokyo univ techn...
  • 1 篇 waseda univ sch ...
  • 1 篇 technol inst aer...
  • 1 篇 delft center for...
  • 1 篇 vtt tech res ctr...
  • 1 篇 xi an jiao tong ...
  • 1 篇 waseda univ sch ...
  • 1 篇 beijing univ tec...
  • 1 篇 jerusalem coll e...
  • 1 篇 department of ci...
  • 1 篇 nanjing univ pos...
  • 1 篇 hubei univ arts ...
  • 1 篇 natl inst techno...
  • 1 篇 czech institute ...
  • 1 篇 kansai univ fac ...
  • 1 篇 northeastern uni...
  • 1 篇 shanghai jiao to...
  • 1 篇 gsss inst engn &...
  • 1 篇 beijing key lab ...
  • 1 篇 xi an jiao tong ...

作者

  • 2 篇 li donghe
  • 2 篇 yang qingyu
  • 1 篇 mahato ganesh ku...
  • 1 篇 gurumoorthy sasi...
  • 1 篇 osana yuko
  • 1 篇 li xin
  • 1 篇 ma lei
  • 1 篇 sharifbaev a. n.
  • 1 篇 ahmed ibrahim
  • 1 篇 kuznetsov yu. a.
  • 1 篇 zainidinov h. n.
  • 1 篇 kuroe yasuaki
  • 1 篇 el moudni abdell...
  • 1 篇 hu ly
  • 1 篇 chakraborty swar...
  • 1 篇 nakamura shingo
  • 1 篇 cenk ozan
  • 1 篇 hemerly em
  • 1 篇 biswas gautam
  • 1 篇 alibekov eduard

语言

  • 19 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Reinforcement Learning method"
21 条 记 录,以下是1-10 订阅
排序:
Robust Fault-tolerant Tracking Control for Linear Discrete-time Systems via reinforcement learning method
收藏 引用
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS 2025年 第2期23卷 520-529页
作者: Nguyen, Ngoc Hoai An Kim, Sung Hyun Univ Ulsan Dept Elect Elect & Comp Engn Ulsan 680749 South Korea
Concentrated on the off-policy reinforcement learning method, this paper explores a model-free algorithm for addressing the robust fault-tolerant tracking problem in discrete-time linear systems with time-varying actu... 详细信息
来源: 评论
reinforcement learning method for QoE-aware Optimization of Content Delivery
Reinforcement Learning Method for QoE-aware Optimization of ...
收藏 引用
IEEE Wireless Communications and Networking Conference (WCNC)
作者: Yousaf, Faqir Zarrar Mammela, Olli Mannersalo, Petteri NEC Labs Europe Heidelberg Germany VTT Tech Res Ctr Finland Espoo Finland
The delivery of video services in a controllable and resource efficient manner while meeting the various QoE/QoS requirements in mobile networks is a challenging task, especially in a multiclass wireless environment. ... 详细信息
来源: 评论
reinforcement learning method-based stable gait synthesis for biped robot
Reinforcement learning method-based stable gait synthesis fo...
收藏 引用
8th International Conference on Control, Automation, Robotics and Vision (ICARCV 2004)
作者: Hu, LY Sun, ZQ Tsinghua Univ Comp Sci & Technol Dept State Key Lab Intelligent Technol & Syst Beijing 100084 Peoples R China
A stable gait generation algorithm based on T-S type fuzzy learning net is proposed in this paper. Gait generation is divided into model construction and error learning. Reference gait model and dynamic model are firs... 详细信息
来源: 评论
Swarm reinforcement learning method Based on Hierarchical Q-learning
Swarm Reinforcement Learning Method Based on Hierarchical Q-...
收藏 引用
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
作者: Kuroe, Yasuaki Takeuchi, Kenya Maeda, Yutaka Kansai Univ Fac Engn Sci Suita Osaka Japan
In last decades the reinforcement learning method has attracted a great deal of attention and many studies have been done. However, this method is basically a trial-and-error scheme and it takes much computational tim... 详细信息
来源: 评论
An electrical vehicle-assisted demand response management system: A reinforcement learning method
收藏 引用
FRONTIERS IN ENERGY RESEARCH 2023年 10卷
作者: Li, Donghe Yang, Qingyu Ma, Linyue Wang, Yiran Zhang, Yang Liao, Xiao Xi An Jiao Tong Univ Sch Automat Sci & Engn Xian Shaanxi Peoples R China Xi An Jiao Tong Univ State Key Lab Mfg Syst Engn Xian Shaanxi Peoples R China State Grid Informat & Telecommun Grp Co LTD Beijing Peoples R China
With the continuous progress of urbanization, determining the charging and discharging strategy for randomly parked electric vehicles to help the peak load shifting without affecting users' travel is a key problem... 详细信息
来源: 评论
End-to-End Deep Policy Feedback-Based reinforcement learning method for Quantization in DNNs
收藏 引用
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS 2022年 第13期31卷
作者: Babu, R. Logesh Gurumoorthy, Sasikumar Parameshachari, B. D. Nelson, S. Christalin Hua, Qiaozhi Madanapalle Inst Technol & Sci Dept Comp Sci & Engn Chittoor 517325 Andhra Pradesh India Jerusalem Coll Engn Dept Comp Sci & Engn Chennai 600100 Tamil Nadu India GSSS Inst Engn & Technol Women Dept Telecommun Engn Mysuru 570011 Karnataka India Univ Petr & Energy Studies UPES Sch Comp Sci Dept Syst Cluster Dehra Dun 248007 Uttarakhand India Hubei Univ Arts & Sci Sch Comp Xiangyang 441000 Hubei Peoples R China
In the resource-constrained embedded systems, the designing of efficient deep neural networks is a challenging process, due to diversity in the artificial intelligence applications. The quantization in deep neural net... 详细信息
来源: 评论
Solving Network Design Problem with Dynamic Network Loading Profiles Using Modified reinforcement learning method
收藏 引用
Procedia - Social and Behavioral Sciences 2014年 111卷 38-47页
作者: Cenk Ozan Halim Ceylan Soner Haldenbilen Department of Civil Engineering Pamukkale University Kinikli Campus Denizli 20070 Turkey
This study aims to solve dynamic user Equilibrium Network Design Problem (ENDP) with dynamic network loading profiles using modified reinforcement learning (RL) approach. The bi-level programming technique is used to ... 详细信息
来源: 评论
Design of ABR Flow Controller Based on reinforcement learning-PID method
Design of ABR Flow Controller Based on Reinforcement Learnin...
收藏 引用
20th Chinese Control and Decision Conference
作者: Zhao, Xin Li, Xin Shenyang Inst Aeronaut Engn Sch Elect & Informat Engn Shenyang 110136 Peoples R China Northeastern Univ Coll Informat Sci & Engn Shenyang 110004 Peoples R China
For the congestion problems in asynchronous transfer mode (ATM) networks, the reinforcement learning method is used in the updating of the control parameters, and a controller based on reinforcement learning-PID metho... 详细信息
来源: 评论
Formulating and analysis of traffic flow to secure software-defined network (SDN) using recursive network (RN) learning method
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第5期81卷
作者: Ram, Anil Chakraborty, Swarnendu Kumar Banerjee, Aiswarrya Mahato, Ganesh Kumar Natl Inst Technol Arunachal Pradesh Dept Comp Sci & Engn Jote 791113 Arunachal Prade India
This work proposes a new solution for monitoring traffic flow (TFM) in the context of software-defined network (SDN) systems, particularly focusing on the detection of cyberattacks like DDoS. The solution is based on ... 详细信息
来源: 评论
Comparison of Model Predictive and reinforcement learning methods for Fault Tolerant Control
收藏 引用
IFAC-PapersOnLine 2018年 第24期51卷 233-240页
作者: Ahmed, Ibrahim Khorasgani, Hamed Biswas, Gautam Vanderbilt University United States Institute of Software Integrated Systems Vanderbilt University United States
A desirable property in fault-tolerant controllers is adaptability to system changes as they evolve during systems operations. An adaptive controller does not require optimal control policies to be enumerated for poss... 详细信息
来源: 评论