The performance of an inverse dynamics guidance and control strategy is experimentally evaluated for the planar maneuver of a "chaser" spacecraft docking with a rotating "target." The experiments w...
详细信息
The performance of an inverse dynamics guidance and control strategy is experimentally evaluated for the planar maneuver of a "chaser" spacecraft docking with a rotating "target." The experiments were conducted on an airbearing proximity maneuver testbed. The chaser spacecraft simulator consists of a three-degree-of-freedom autonomous vehicle floating via air pads on a granite table and actuated by thrusters. The target consists of a docking interface mounted on a rotational stage with the rotation axis perpendicular to the plane of motion. Given a preassigned trajectory, the guidance and control strategy computes the required maneuver control forces and torque via an inverse dynamics operation. The recorded data of 150 experimental test runs were analyzed using two-way analysis of variance and post hoc Tukey tests. The metrics were maneuver success, vehicle mass change, maneuver duration, thruster duty cycle, and maneuver work. The results showed that the guidance and control algorithm provided robust performance over a range of target rotation rates from 1 to 4 deg /s. The effects of the rate estimation errors are measurable but not dominant.
This paper considers the situation where a small satellite shall autonomously rendezvous with a tumbling object in a circular low Earth orbit (LEO) and derives a path-based model predictive controller that uses the do...
详细信息
This paper considers the situation where a small satellite shall autonomously rendezvous with a tumbling object in a circular low Earth orbit (LEO) and derives a path-based model predictive controller that uses the docking point state and position of the chaser to guide it to a safe docking autonomously. The strategy embeds collision avoidance elements and reduces the computational effort for calculating the pulses to be provided by the thrusters through opportune algebraic manipulations, a Runge-Kutta 4 propagation method using linearized state transition matrices, and implicit embedding of dynamically equivalent thrust models, leading to constant state propagation matrices. Furthermore, the inputs design optimization problem and the embedded collision avoidance scheme are modeled and explicitly crafted as convex problems, contributing positively to low computational requirements. The docking and collision avoidance capabilities of the proposed scheme are extensively tested in an environment that accounts for all the perturbations relevant to LEO frameworks, for realistic thrust schemes, and for uncertainties in the measurement. Numerical results assess which tumbling objects can be docked or not by means of the proposed schemes as a function of the tumbling rates versus the thrust capabilities and hardware uncertainty of the docker.
暂无评论