咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 representation l...
  • 1 篇 maximum mutual i...
  • 1 篇 preference infor...
  • 1 篇 prediction loss
  • 1 篇 representation l...
  • 1 篇 generative adver...
  • 1 篇 learning objecti...
  • 1 篇 recommender syst...
  • 1 篇 potential bias
  • 1 篇 recommendation f...
  • 1 篇 baseline methods
  • 1 篇 recommendation m...
  • 1 篇 medical services
  • 1 篇 counterfactual s...
  • 1 篇 recommendation a...
  • 1 篇 minimum method
  • 1 篇 counterfactual t...
  • 1 篇 recommender syst...
  • 1 篇 user representat...
  • 1 篇 recommendation t...

机构

  • 1 篇 guilin universit...
  • 1 篇 jinan university...
  • 1 篇 guilin universit...
  • 1 篇 guilin universit...

作者

  • 1 篇 liu wenqiang
  • 1 篇 chang liang
  • 1 篇 bin chenzhong
  • 1 篇 zhang feng
  • 1 篇 gu tianlong

语言

  • 1 篇 英文
检索条件"主题词=Representation Learning Methods"
1 条 记 录,以下是1-10 订阅
排序:
FairCoRe: Fairness-Aware Recommendation Through Counterfactual representation learning
收藏 引用
IEEE Transactions on Knowledge and Data Engineering 2025年 第7期37卷 4049-4062页
作者: Bin, Chenzhong Liu, Wenqiang Zhang, Feng Chang, Liang Gu, Tianlong Guilin University of Electronic Technology School of Computer Science and Information Security Guilin541004 China Guilin University of Electronic Technology School of Business Guilin541004 China Guilin University of Electronic Technology Guangxi Key Laboratory of Trusted Software Guilin541004 China Jinan University College of Cyber Security Engineering Research Center of Trustworthy AI Ministry of Education Guangzhou510632 China
Eliminating bias from data representations is crucial to ensure fairness in recommendation. Existing studies primarily focus on weakening the correlation between data representations and sensitive attributes, yet may ... 详细信息
来源: 评论