咨询与建议

限定检索结果

文献类型

  • 14 篇 期刊文献
  • 7 篇 会议
  • 1 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 7 篇 计算机科学与技术...
    • 5 篇 交通运输工程
    • 4 篇 电气工程
    • 3 篇 控制科学与工程
    • 2 篇 机械工程
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
  • 5 篇 理学
    • 3 篇 数学
    • 2 篇 化学
    • 1 篇 物理学
    • 1 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...

主题

  • 23 篇 reward functions
  • 8 篇 reinforcement le...
  • 3 篇 machine learning
  • 2 篇 trajectory track...
  • 2 篇 inverse reinforc...
  • 2 篇 deep reinforceme...
  • 1 篇 markov chains
  • 1 篇 stable learning
  • 1 篇 residential road...
  • 1 篇 adaptive traffic...
  • 1 篇 multiple rewards
  • 1 篇 pomdp
  • 1 篇 multiobjective a...
  • 1 篇 smooth traffic f...
  • 1 篇 maximum derivati...
  • 1 篇 traffic scenario...
  • 1 篇 virtual screenin...
  • 1 篇 roads
  • 1 篇 deep learning
  • 1 篇 online tasks

机构

  • 1 篇 univ british col...
  • 1 篇 inov inesc r alv...
  • 1 篇 ajou univ sch ie...
  • 1 篇 univ british col...
  • 1 篇 chang chien coll...
  • 1 篇 mercedes-benz gr...
  • 1 篇 eindhoven univ t...
  • 1 篇 department organ...
  • 1 篇 uninova cts p-6 ...
  • 1 篇 univ hyderabad s...
  • 1 篇 qatar univ elect...
  • 1 篇 deetc isel ipl r...
  • 1 篇 univ canada west...
  • 1 篇 univ pisa dept e...
  • 1 篇 school of electr...
  • 1 篇 northeast forest...
  • 1 篇 lasi p-6 caparic...
  • 1 篇 aalborg univ dep...
  • 1 篇 lut univ dept me...
  • 1 篇 faculty of engin...

作者

  • 2 篇 alsaleh rushdi
  • 2 篇 sayed tarek
  • 1 篇 nishi kentaro
  • 1 篇 mikkola aki
  • 1 篇 massimo piccardi
  • 1 篇 viering malte
  • 1 篇 zamzam tassneem
  • 1 篇 vandijk nm
  • 1 篇 xingjian sun
  • 1 篇 nower naushin
  • 1 篇 metz jan
  • 1 篇 prokop ales
  • 1 篇 maurer florian
  • 1 篇 foschi rachele
  • 1 篇 puterman ml
  • 1 篇 daniel christian
  • 1 篇 vieira manuela
  • 1 篇 wild thomas
  • 1 篇 kim t
  • 1 篇 lenke oliver

语言

  • 22 篇 英文
  • 1 篇 其他
检索条件"主题词=Reward functions"
23 条 记 录,以下是1-10 订阅
排序:
Integrating Visible Light Communication and AI for Adaptive Traffic Management: A Focus on reward functions and Rerouting Coordination
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第1期15卷 116-116页
作者: Vieira, Manuela Galvao, Goncalo Vieira, Manuel A. Vestias, Mario Louro, Paula Vieira, Pedro DEETC ISEL IPL R Conselheiro Emidio Navarro P-1949014 Lisbon Portugal UNINOVA CTS P-2829516 Caparica Portugal LASI P-2829516 Caparica Portugal NOVA Sch Sci & Technol P-2829516 Caparica Portugal INOV INESC R Alves Redol 9 P-1000029 Lisbon Portugal Inst Super Tecn Inst Telecomunicacoes P-1049001 Lisbon Portugal
This study combines Visible Light Communication (VLC) and Artificial Intelligence (AI) to optimize traffic signal control, reduce congestion, and enhance safety. Utilizing existing road infrastructure, VLC technology ... 详细信息
来源: 评论
Performance Analysis of Different reward functions in Reinforcement Learning for the Scheduling of Modular Automotive Production Systems
收藏 引用
Procedia CIRP 2024年 126卷 81-86页
作者: Jan Markus Gelfgren Eric Tillmann Bill Tim Luther Simon Hagemann Sigrid Wenzel Mercedes-Benz Group AG Bela-Barenyi-Straße 1 71059 Sindelfingen Germany Department Organisation of Production and Factory Planning University of Kassel Kurt-Wolters-Straße 3 34125 Kassel Germany
Conventional, linear production lines struggle with the new flexibility requirements of the automotive market. Modular production has the potential to radically improve the production flexibility. However, scheduling ... 详细信息
来源: 评论
EPIC-Q: Equivalent-Policy Invariant Comparison Enhanced Transfer Q-learning for Run-Time SoC Performance-Power Optimization  24th
EPIC-Q: Equivalent-Policy Invariant Comparison Enhanced Tran...
收藏 引用
24th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
作者: Surhonne, Anmol Fawzi, Haitham S. Maurer, Florian Lenke, Oliver Meidinger, Michael Wild, Thomas Herkersdorf, Andreas Tech Univ Munich Arcistr 21 D-80333 Munich Germany
As power density becomes the main constraint of multicore systems, managing power consumption using DVFS while providing the desired performance becomes increasingly critical. Reinforcement learning (RL) performs sign... 详细信息
来源: 评论
Fine-tuning text-to-SQL models with reinforcement-learning training objectives
Natural Language Processing Journal
收藏 引用
Natural Language Processing Journal 2025年 10卷
作者: Xuan-Bang Nguyen Xuan-Hieu Phan Massimo Piccardi University of Engineering and Technology Vietnam National University Hanoi Viet Nam FPT Technology Research Institute FPT University Hanoi Viet Nam Faculty of Engineering and Information Technology University of Technology Sydney Broadway NSW 2007 Australia
Text-to-SQL is an important natural language processing task that helps users automatically convert natural language queries into formal SQL code. While transformer-based models have pushed text-to-SQL to unprecedente... 详细信息
来源: 评论
Adaptive traffic signal control system using composite reward architecture based deep reinforcement learning
收藏 引用
IET INTELLIGENT TRANSPORT SYSTEMS 2020年 第14期14卷 2030-2041页
作者: Jamil, Abu Rafe Md Ganguly, Kishan Kumar Nower, Naushin Univ Dhaka Inst Informat Technol Dhaka 1000 Bangladesh
The increasing traffic congestion problem can be solved by an adaptive traffic signal control (ATSC) system as it utilises real-time traffic information to control traffic signals. Recently, deep reinforcement learnin... 详细信息
来源: 评论
Survey of Model-Based Reinforcement Learning: Applications on Robotics
收藏 引用
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS 2017年 第2期86卷 153-173页
作者: Polydoros, Athanasios S. Nalpantidis, Lazaros Aalborg Univ Dept Mech & Mfg Engn AC Meyers Vaenge 15 DK-2450 Copenhagen SV Denmark
Reinforcement learning is an appealing approach for allowing robots to learn new tasks. Relevant literature reveals a plethora of methods, but at the same time makes clear the lack of implementations for dealing with ... 详细信息
来源: 评论
Monte Carlo tree search control scheme for multibody dynamics applications
收藏 引用
NONLINEAR DYNAMICS 2024年 第10期112卷 8363-8391页
作者: Tang, Yixuan Orzechowski, Grzegorz Prokop, Ales Mikkola, Aki LUT Univ Dept Mech Engn Lappeenranta 53850 Finland Brno Univ Technol Fac Mech Engn Technicka 2896-2 Brno 61669 Czech Republic
There is considerable interest in applying reinforcement learning (RL) to improve machine control across multiple industries, and the automotive industry is one of the prime examples. Monte Carlo Tree Search (MCTS) ha... 详细信息
来源: 评论
Active reward learning with a novel acquisition function
收藏 引用
AUTONOMOUS ROBOTS 2015年 第3期39卷 389-405页
作者: Daniel, Christian Kroemer, Oliver Viering, Malte Metz, Jan Peters, Jan Tech Univ Darmstadt D-64289 Darmstadt Germany Max Planck Inst Intelligente Syst D-72076 Tubingen Germany
reward functions are an essential component of many robot learning methods. Defining such functions, however, remains hard in many practical applications. For tasks such as grasping, there are no reliable success meas... 详细信息
来源: 评论
Low complexity dynamic scheduling algorithm for real-time tasks
收藏 引用
ELECTRONICS LETTERS 1999年 第24期35卷 2106-2108页
作者: Jung, G Kim, T Park, S Choi, K Ajou Univ Sch EE Suwon 442749 South Korea ETRI Taejon 305350 South Korea Ajou Univ Sch IE & CE Suwon 442749 South Korea
It is shown that the problem of maximising the total reward of online tasks can be solved by finding the minimum of the maximum derivatives of the reward functions. Based on the modified approach and a close observati... 详细信息
来源: 评论
Performance evaluation with temporal rewards
收藏 引用
PERFORMANCE EVALUATION 2002年 第2-3期50卷 189-218页
作者: Voeten, JPM Eindhoven Univ Technol Fac Elect Engn Eindhoven Embedded Syst Inst Sect Informat & Commun Syst NL-5600 MB Eindhoven Netherlands
Today many formalisms exist for specifying complex Markov chains. In contrast, formalisms for specifying rewards, enabling the analysis of long-run average performance properties, have remained quite primitive. Basica... 详细信息
来源: 评论