咨询与建议

限定检索结果

文献类型

  • 3 篇 会议
  • 1 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 5 篇 rl algorithms
  • 1 篇 linear function ...
  • 1 篇 cognition
  • 1 篇 scheduling polic...
  • 1 篇 constraint gener...
  • 1 篇 chat robots
  • 1 篇 model-free
  • 1 篇 neural networks
  • 1 篇 reinforcement le...
  • 1 篇 word overlap rat...
  • 1 篇 interviews
  • 1 篇 topic models
  • 1 篇 terminology
  • 1 篇 markov decision ...
  • 1 篇 pac-man microwor...
  • 1 篇 work domain anal...
  • 1 篇 safe reinforceme...
  • 1 篇 wda
  • 1 篇 context sensitiv...
  • 1 篇 algorithm design...

机构

  • 1 篇 georgia inst tec...
  • 1 篇 saveetha univ sa...
  • 1 篇 srm inst sci & t...
  • 1 篇 school of intern...
  • 1 篇 king khalid univ...
  • 1 篇 vinayaka mission...
  • 1 篇 university of mi...
  • 1 篇 capital one serv...
  • 1 篇 cmr univ res & i...

作者

  • 1 篇 mubarakali azath
  • 1 篇 tokadli gueliz
  • 1 篇 sujatha s.
  • 1 篇 kolangiammal s.
  • 1 篇 xu bo
  • 1 篇 kumar s. mohan
  • 1 篇 huayi sheng
  • 1 篇 peter john benit...
  • 1 篇 karthik s.
  • 1 篇 feigh karen m.
  • 1 篇 wei honghao

语言

  • 5 篇 英文
检索条件"主题词=Rl algorithms"
5 条 记 录,以下是1-10 订阅
排序:
Cloud-Powered Healthcare Appointment Optimization with Reinforcement Learning for Efficiency  2
Cloud-Powered Healthcare Appointment Optimization with Reinf...
收藏 引用
2nd International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI)
作者: Kumar, S. Mohan Peter, John Benito Jesudasan Kolangiammal, S. Mubarakali, Azath Karthik, S. Sujatha, S. CMR Univ Res & Innovat Bangalore Karnataka India Capital One Serv LLC Cyber Data Sci & Engn Richmond VA USA SRM Inst Sci & Technol Dept Elect & Commun Engn Chennai Tamil Nadu India King Khalid Univ Coll Comp Sci Abha Saudi Arabia Vinayaka Missions Res Fdn Deemed Be Univ Vinayaka Missions Kirupananda Variyar Engn Coll Dept Comp Sci & Engn Salem Tamil Nadu India Saveetha Univ Saveetha Sch Engn Saveetha Inst Med & Tech Sci Dept Biomed Engn Chennai Tamil Nadu India
Improving efficiency and patient satisfaction through better appointment scheduling is a problem for healthcare systems across the globe. To improve healthcare appointment scheduling procedures, this research proposes... 详细信息
来源: 评论
Constructing an English Language Chatbot Using Reinforcement Learning algorithms  3
Constructing an English Language Chatbot Using Reinforcement...
收藏 引用
3rd International Conference on Artificial Intelligence and Autonomous Robot Systems, AIARS 2024
作者: Xu, Bo School of International Communication Jilin Animation Institute Changchun130000 China
Against the backdrop of accelerating global integration, the role of English as a global language is becoming increasingly significant worldwide. With the development of technology, the development of chatbots (Chat R... 详细信息
来源: 评论
Provably Efficient algorithms for Safe Reinforcement Learning
Provably Efficient Algorithms for Safe Reinforcement Learnin...
收藏 引用
作者: Wei, Honghao University of Michigan
学位级别:Ph.D., Doctor of Philosophy
Safe reinforcement learning (rl) is an area of research focused on developing algorithms and methods that ensure the safety of rl agents during learning and decision-making processes. The goal is to enable rl agents t... 详细信息
来源: 评论
Review of Deep Reinforcement Learning for Real Robots
World Scientific Research Journal
收藏 引用
World Scientific Research Journal 2022年 第7期8卷 686-693页
作者: Huayi Sheng
Deep reinforcement learning is one of the most exciting fields in artificial intelligence, combining reinforcement learning with the power of deep neural networks to understand the world and act on that understanding.... 详细信息
来源: 评论
Option and Constraint Generation using Work Domain Analysis
Option and Constraint Generation using Work Domain Analysis
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Tokadli, Gueliz Feigh, Karen M. Georgia Inst Technol Sch Aerosp Engn Atlanta GA 30332 USA
In this paper we investigate the use of Work Domain Analysis (WDA), a technique from the field of cognitive engineering, to inform the creation of options and constraints for Reinforcement Learning (rl) algorithms. Th... 详细信息
来源: 评论