咨询与建议

限定检索结果

文献类型

  • 3 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 4 篇 电气工程
    • 3 篇 计算机科学与技术...
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 2 篇 理学
    • 2 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 5 篇 robust graph sig...
  • 3 篇 graph denoising
  • 2 篇 graph filter ide...
  • 2 篇 graph perturbati...
  • 1 篇 signal processin...
  • 1 篇 network topology
  • 1 篇 non-euclidean da...
  • 1 篇 sparse recovery
  • 1 篇 graph neural net...
  • 1 篇 random networks
  • 1 篇 laplace equation...
  • 1 篇 graph topologies
  • 1 篇 topology
  • 1 篇 robust filter id...
  • 1 篇 uncertainty
  • 1 篇 small perturbati...
  • 1 篇 perturbation met...
  • 1 篇 robustness

机构

  • 3 篇 king juan carlos...
  • 1 篇 sapienza univ ro...
  • 1 篇 king juan carlos...

作者

  • 4 篇 marques antonio ...
  • 4 篇 rey samuel
  • 3 篇 tenorio victor m...
  • 1 篇 ceci elena
  • 1 篇 barbarossa sergi...

语言

  • 5 篇 英文
检索条件"主题词=Robust Graph Signal Processing"
5 条 记 录,以下是1-10 订阅
排序:
robust graph Filter Identification and graph Denoising From signal Observations
收藏 引用
IEEE TRANSACTIONS ON signal processing 2023年 71卷 3651-3666页
作者: Rey, Samuel Tenorio, Victor M. Marques, Antonio G. King Juan Carlos Univ Dept Signal Theory & Commun Madrid 28933 Spain
When facing graph signal processing tasks, it is typically assumed that the graph describing the support of the signals is known. However, in many relevant applications the available graph suffers from observational e... 详细信息
来源: 评论
BLIND DECONVOLUTION OF SPARSE graph signalS IN THE PRESENCE OF PERTURBATIONS  49
BLIND DECONVOLUTION OF SPARSE GRAPH SIGNALS IN THE PRESENCE ...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Tenorio, Victor M. Rey, Samuel Marques, Antonio G. King Juan Carlos Univ Dept Signal Theory & Commun Madrid Spain
Blind deconvolution over graphs involves using (observed) output graph signals to obtain both the inputs (sources) as well as the filter that drives (models) the graph diffusion process. This is an ill-posed problem t... 详细信息
来源: 评论
robust graph Neural Network based on graph Denoising  57
Robust Graph Neural Network based on Graph Denoising
收藏 引用
57th Asilomar Conference on signals, Systems and Computers
作者: Tenorio, Victor M. Rey, Samuel Marques, Antonio G. King Juan Carlos Univ Dept Signal Theory & Commun Madrid Spain
graph Neural Networks (GNNs) have emerged as a notorious alternative to address learning problems dealing with non-Euclidean datasets. However, although most works assume that the graph is perfectly known, the observe... 详细信息
来源: 评论
robust graph-FILTER IDENTIFICATION WITH graph DENOISING REGULARIZATION
ROBUST GRAPH-FILTER IDENTIFICATION WITH GRAPH DENOISING REGU...
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing (ICASSP)
作者: Rey, Samuel Marques, Antonio G. King Juan Carlos Univ Dept Signal Theory & Commun Madrid Spain
When approaching graph signal processing tasks, graphs are usually assumed to be perfectly known. However, in many practical applications, the observed (inferred) network is prone to perturbations which, if ignored, w... 详细信息
来源: 评论
graph signal processing in the Presence of Topology Uncertainties
收藏 引用
IEEE TRANSACTIONS ON signal processing 2020年 第0期68卷 1558-1573页
作者: Ceci, Elena Barbarossa, Sergio Sapienza Univ Rome Dept Informat Engn Elect & Telecommun I-00184 Rome Italy
The goal of this paper is to expand graph signal processing tools to deal with cases where the graph topology is not perfectly known. Assuming that the uncertainty affects only a limited number of edges, we make use o... 详细信息
来源: 评论