This study proposes novel sparsity- aware space-time adaptive processing (sa-stap) algorithms with L-1-norm regularisation for airborne phased-array radar applications. The proposed sa-stap algorithms suppose that a n...
详细信息
This study proposes novel sparsity- aware space-time adaptive processing (sa-stap) algorithms with L-1-norm regularisation for airborne phased-array radar applications. The proposed sa-stap algorithms suppose that a number of samples of the full-rank stap datacube are not meaningful for processing and the optimal full-rank stap filter weight vector is sparse, or nearly sparse. The core idea of the proposed method is imposing a sparse regularisation (L-1-norm type) to the minimum variance stap cost function. Under some reasonable assumptions, the authors firstly propose an L-1-based sample matrix inversion to compute the optimal filter weight vector. However, it is impractical because of its matrix inversion, which requires a high computational cost when using a large phased-array antenna. In order to compute the stap parameters in a cost-effective way, the authors devise low-complexity algorithms based on conjugate gradient techniques. A computational complexity comparison with the existing algorithms and an analysis of the proposed algorithms are conducted. Simulation results with both simulated and the Mountain-Top data demonstrate that fast signal-to-interference-plus-noise-ratio convergence and good performance of the proposed algorithms are achieved.
暂无评论