We study both genotypic and phenotypic convergence in GP floating point continuous domain symbolic regression over thousands of generations. Subtree fitness variation across the population is measured and shown in man...
详细信息
We study both genotypic and phenotypic convergence in GP floating point continuous domain symbolic regression over thousands of generations. Subtree fitness variation across the population is measured and shown in many cases to fall. In an expanding region about the root node, both genetic opcodes and function evaluation values are identical or nearly identical. Bottom up (leaf to root) analysis shows both syntactic and semantic (including entropy) similarity expand from the outermost node. Despite large regions of zero variation, fitness continues to evolve and near zero crossover disruption suggests improved GP systems within existing memory use.
The high chip-level integration enables the implementation of large-scale parallelprocessing architectures with 64 and more processing nodes on a single chip or on an FPGA device. These parallel systems require a cos...
详细信息
The high chip-level integration enables the implementation of large-scale parallelprocessing architectures with 64 and more processing nodes on a single chip or on an FPGA device. These parallel systems require a cost-effective yet high-performance interconnection scheme to provide the needed communications between processors. The massively parallel Network on Chip (mpNoC) was proposed to address the demand for parallel irregular communications for massively parallelprocessing System on Chip (mppSoC). Targeting FPGA-based design, an efficient mpNoC low level RTL implementation is proposed taking into account design constraints. The proposed network is designed as an FPGA based Intellectual Property (IP) able to be configured in different communication modes. It can communicate between processors and also perform parallel I/O data transfer which is clearly a key issue in an simd system. The mpNoC RTL implementation presents good performances in terms of area, throughput and power consumption which are important metrics targeting an on chip implementation. mpNoC is a flexible architecture that is suitable for use in FPGA-based parallel systems. This paper introduces the basic mppSoC architecture. It mainly focuses on the mpNoC flexible IP based design and its implementation on FPGA. The integration of mpNoC in mppSoC is also described. Implementation results on a Stratix II FPGA device are given for three data-parallel applications ran on mppSoC. The obtained good performances justify the effectiveness of the proposed parallel network. It is shown that the mpNoC is a lightweight parallel network making it suitable for both small as well as large FPGA-based parallel systems. (C) 2010 Elsevier B.V. All rights reserved.
暂无评论