咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 12 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 3 篇 控制科学与工程
    • 2 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 船舶与海洋工程
    • 1 篇 软件工程
  • 4 篇 理学
    • 2 篇 生物学
    • 1 篇 数学
    • 1 篇 化学
    • 1 篇 系统科学
  • 2 篇 农学
    • 1 篇 作物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 16 篇 smo algorithm
  • 3 篇 svm
  • 3 篇 support vector m...
  • 2 篇 rbf network
  • 2 篇 flatness
  • 2 篇 kernel methods
  • 2 篇 pattern recognit...
  • 2 篇 classification
  • 1 篇 support vector r...
  • 1 篇 sequence informa...
  • 1 篇 bagging algorith...
  • 1 篇 boundary sample
  • 1 篇 support vector m...
  • 1 篇 difference of de...
  • 1 篇 gene region
  • 1 篇 sensitivity anal...
  • 1 篇 system identific...
  • 1 篇 lshs-mcsvm
  • 1 篇 sparse classifie...
  • 1 篇 semantic feature...

机构

  • 1 篇 beijing univ tec...
  • 1 篇 noorul islamic c...
  • 1 篇 zagazig univ fac...
  • 1 篇 natl univ singap...
  • 1 篇 univ michigan de...
  • 1 篇 school of comput...
  • 1 篇 yanshan univ col...
  • 1 篇 college of infor...
  • 1 篇 yu da univ sci &...
  • 1 篇 shan tou univ sc...
  • 1 篇 yahoo res labs p...
  • 1 篇 univ pitesti dep...
  • 1 篇 sw jiaotong univ...
  • 1 篇 beijing inst rad...
  • 1 篇 acad econ studie...
  • 1 篇 ionian univ dept...
  • 1 篇 inner mongolia u...
  • 1 篇 indian inst sci ...
  • 1 篇 menoufia univ fa...
  • 1 篇 huazhong univ sc...

作者

  • 2 篇 keerthi ss
  • 1 篇 kim jooseuk
  • 1 篇 xiujun wu
  • 1 篇 attiya gamal
  • 1 篇 chen ying
  • 1 篇 cocianu catalina
  • 1 篇 poo an
  • 1 篇 nan li
  • 1 篇 liu liu
  • 1 篇 xu tu
  • 1 篇 sun kai
  • 1 篇 xu guohua
  • 1 篇 state luminita
  • 1 篇 he hai-tao
  • 1 篇 xu xh
  • 1 篇 vlamos panayioti...
  • 1 篇 xu shuang
  • 1 篇 zhang jianye
  • 1 篇 wang wenjin
  • 1 篇 chen chien-ming

语言

  • 16 篇 英文
检索条件"主题词=SMO algorithm"
16 条 记 录,以下是11-20 订阅
排序:
A New Sphere-Structured Multi-Class Classifier
A New Sphere-Structured Multi-Class Classifier
收藏 引用
Pacific-Asia Conference on Circuits, Communications and Systems
作者: Xu, Tu SW Jiaotong Univ Sch Informat Sci & Technol Chengdu 610031 Sichuan Peoples R China
Hyper-Sphere Multi-Class SVM (HSMC-SVM) is a kind of direct-model multi-class classifiers, and its training and testing speed are high. However, with the one-order norm soft-margin, classifying precision of HSMC-SVM i... 详细信息
来源: 评论
System Identification of AUV Hydrodynamic Model Based on Support Vector Machine  7
System Identification of AUV Hydrodynamic Model Based on Sup...
收藏 引用
7th IEEE International Conference on Underwater System Technology - Theory and Applications (IEEE USYS)
作者: Chen, Ying Wang, Wenjin Xu, Guohua Wuhan Vocat Coll Software & Engn Sch Mech Engn Wuhan Hubei Peoples R China Huazhong Univ Sci & Technol Marine Engn Sch Naval Architecture & Ocean Engn Wuhan Hubei Peoples R China
Autonomous Underwater Vehicle (AUV) has already been applied to ocean resource observation, environmental discovery, underwater rescue and many other types of oceanic activities. To achieve better performance and mane... 详细信息
来源: 评论
Support Vector Regression Hybrid algorithm Based on Rough Set
Support Vector Regression Hybrid Algorithm Based on Rough Se...
收藏 引用
IEEE International Conference on Cybernetic Intelligent Systems (CIS 2008)
作者: Deng, Jiuying Chen, Qiang Mao, Zongyuan Gao, Xiangjun Guangdong Inst Educ Dept Comp Sci Guangzhou Guangdong Peoples R China South China Univ Technol Coll Automat Sci & Engn Guangzhou Guangdong Peoples R China
Support Vecto Machine has good generality. Its development for function regressing is not as same as that with fast speed for sample separated. Sequence Minimum Optimizing (smo) is effective on large samples, and is u... 详细信息
来源: 评论
A NEW LEARNING algorithm OF SVM FROM LINEAR SEPARABLE SAMPLES
收藏 引用
International Conference on Information Technology for Manufacturing Systems (ITMS 2011)
作者: State, Luminita Cocianu, Catalina Vlamos, Panayiotis Univ Pitesti Dept Comp Sci Targu Din Vale 1 Pitesti Romania Acad Econ Studies Dept Comp Sci Bucharest Romania Ionian Univ Dept Comp Sci Corfu Greece
Training a SVM corresponds to solving a linearly constrained quadratic problem (QP) in a number of variables equal to the number of data points, this optimization problem becoming challenging when the number of data p... 详细信息
来源: 评论
L2 Kernel Classification
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2010年 第10期32卷 1822-1831页
作者: Kim, JooSeuk Scott, Clayton D. Univ Michigan Dept Elect Engn & Comp Sci Ann Arbor MI 48109 USA
Nonparametric kernel methods are widely used and proven to be successful in many statistical learning problems. Well-known examples include the kernel density estimate (KDE) for density estimation and the support vect... 详细信息
来源: 评论
AN RBF NETWORK APPROACH TO FLATNESS PATTERN RECOGNITION BASED ON SVM LEARNING
AN RBF NETWORK APPROACH TO FLATNESS PATTERN RECOGNITION BASE...
收藏 引用
2006 International Conference on Machine Learning and Cybernetics(IEEE第五届机器学习与控制论坛)
作者: HAI-TAO HE NAN LI College of Information Science and Engineering Yanshan University Qinhuangdao 066004 China
In the traditional method of flatness pattern recognition known as neural network with a changing topological configuration, slow convergence and local minimum were observed. Moreover, the process of experimenting the... 详细信息
来源: 评论