咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 28 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 22 篇 计算机科学与技术...
    • 21 篇 电气工程
    • 6 篇 信息与通信工程
    • 6 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 土木工程
    • 1 篇 交通运输工程
  • 5 篇 医学
    • 5 篇 临床医学
  • 2 篇 理学
    • 1 篇 物理学
    • 1 篇 系统科学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 28 篇 salient object s...
  • 5 篇 deep learning
  • 4 篇 saliency detecti...
  • 3 篇 image segmentati...
  • 3 篇 saliency map
  • 3 篇 saliency model
  • 2 篇 edge direction s...
  • 2 篇 object segmentat...
  • 2 篇 feature extracti...
  • 2 篇 retargeted image...
  • 2 篇 grabcut
  • 2 篇 dense correspond...
  • 1 篇 image fusion
  • 1 篇 focus-moving tec...
  • 1 篇 aggregates
  • 1 篇 region growing
  • 1 篇 moving region co...
  • 1 篇 spatial saliency...
  • 1 篇 dbscan clusterin...
  • 1 篇 object detection

机构

  • 7 篇 shanghai univ sc...
  • 2 篇 shanghai univ mi...
  • 2 篇 nanjing univ sci...
  • 1 篇 nanjing univ sof...
  • 1 篇 key laboratory o...
  • 1 篇 hunan normal uni...
  • 1 篇 hunan univ natl ...
  • 1 篇 sun yat sen univ...
  • 1 篇 univ manitoba de...
  • 1 篇 chinese acad sci...
  • 1 篇 univ paris 13 in...
  • 1 篇 aselsan mgeo eo ...
  • 1 篇 hong kong univ s...
  • 1 篇 univ elect sci &...
  • 1 篇 pla army acad ar...
  • 1 篇 southwest jiaoto...
  • 1 篇 univ leeds leeds...
  • 1 篇 nanjing univ sta...
  • 1 篇 cas ctr excellen...
  • 1 篇 natl univ singap...

作者

  • 6 篇 liu zhi
  • 3 篇 shi ran
  • 3 篇 shen liquan
  • 2 篇 li yin
  • 2 篇 gabbouj moncef
  • 2 篇 du huan
  • 2 篇 wang yang
  • 2 篇 kiranyaz serkan
  • 2 篇 aytekin caglar
  • 2 篇 zhang zhaoyang
  • 1 篇 xiao xiao-long
  • 1 篇 qu xingda
  • 1 篇 hollitt christop...
  • 1 篇 zhang z.
  • 1 篇 pedro v. sander
  • 1 篇 rehg james m.
  • 1 篇 li gongyang
  • 1 篇 ouyang xiuqin
  • 1 篇 moradi morteza
  • 1 篇 bayat farhad

语言

  • 27 篇 英文
  • 1 篇 土耳其文
检索条件"主题词=Salient object segmentation"
28 条 记 录,以下是11-20 订阅
排序:
The Secrets of salient object segmentation  27
The Secrets of Salient Object Segmentation
收藏 引用
27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Li, Yin Hou, Xiaodi Koch, Christof Rehg, James M. Yuille, Alan L. Georgia Tech Atlanta GA USA CALTECH Pasadena CA 91125 USA Univ Calif Los Angeles Los Angeles CA 90024 USA
In this paper we provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets. Our analysis identifies serious design flaws of existing sali... 详细信息
来源: 评论
Multi-scale Spatial-Temporal Feature Aggregating for Video salient object segmentation  4
Multi-scale Spatial-Temporal Feature Aggregating for Video S...
收藏 引用
4th IEEE International Conference on Signal and Image Processing (ICSIP)
作者: Mu, Changhong Yuan, Zebin Ouyang, Xiuqin Wang, Bo Soochow Univ Golden Mantis Inst Architecture Suzhou Peoples R China
This paper proposes an algorithm based on supervised deep convolutional neural networks (CNNs), which fully extracts and fuses spatial-temporal information of frames to enhance the video saliency detection performance... 详细信息
来源: 评论
Unsupervised salient object segmentation from color images
Unsupervised salient object segmentation from color images
收藏 引用
Conference on Visual Communications and Image Processing (VCIP)
作者: Liu, Zhi Wang, Lu Shen, Liquan Zhang, Zhaoyang Shanghai Univ Sch Commun & Informat Engn Shanghai 200072 Peoples R China Shanghai Univ Sch Comp Engn & Sci Shanghai 200072 Peoples R China
This paper proposes an efficient approach for unsupervised segmentation of salient objects from color images. A set of Gaussian models are first estimated based on a pre-segmentation result of the input image, and the... 详细信息
来源: 评论
A salient object segmentation framework using diffusion-based affinity learning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 168卷 114428-114428页
作者: Moradi, Morteza Bayat, Farhad Univ Zanjan Dept Elect Engn Zanjan Iran
In this paper, a salient object segmentation framework by using diffusion-based affinity learning and based on absorbing Markov chain (AMC) is proposed. Traditional approaches for structural modeling of images via loc... 详细信息
来源: 评论
Depth-Aware salient object Detection and segmentation via Multiscale Discriminative Saliency Fusion and Bootstrap Learning
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2017年 第9期26卷 4204-4216页
作者: Song, Hangke Liu, Zhi Du, Huan Sun, Guangling Le Meur, Olivier Ren, Tongwei Shanghai Univ Sch Commun & Informat Engn Shanghai 200444 Peoples R China Shanghai Univ Sch Commun & Informat Engn Shanghai 200444 Peoples R China Minist Publ Secur Res Inst 3 Shanghai 201204 Peoples R China Univ Rennes 1 IRISA F-35042 Rennes France Nanjing Univ Software Inst Nanjing 210008 Jiangsu Peoples R China
This paper proposes a novel depth-aware salient object detection and segmentation framework via multiscale discriminative saliency fusion (MDSF) and bootstrap learning for RGBD images (RGB color images with correspond... 详细信息
来源: 评论
salient object Detection and segmentation via Ultra-Contrast
收藏 引用
IEEE ACCESS 2018年 6卷 14870-14883页
作者: Tang, Liangzhi Meng, Fanman Wu, Qingbo Sowah, Nii Longdon Tan, Kai Li, Hongliang Univ Elect Sci & Technol China Sch Elect Engn Chengdu 611731 Sichuan Peoples R China
salient object detection aims at finding the most conspicuous objects in an image that highly catches the user's attention. The traditional contrast based salient object detection algorithms focus on highlighting ... 详细信息
来源: 评论
salient region detection and segmentation for general object recognition and image understanding
收藏 引用
Science China(Information Sciences) 2011年 第12期54卷 2481-2490页
作者: HUANG TieJun 1 , TIAN YongHong 1 , LI Jia 2 & YU HaoNan 11 National Engineering Laboratory for Video Technology, School of Electrical Engineering and Computer Science, Peking University, Beijing 100871, China 2 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China National Engineering Laboratory for Video Technology School of Electrical Engineering and Computer Science Peking University Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
General object recognition and image understanding is recognized as a dramatic goal for computer vision and multimedia retrieval. In spite of the great efforts devoted in the last two decades, it still remains an open... 详细信息
来源: 评论
salient object detection via spectral matting
收藏 引用
PATTERN RECOGNITION 2016年 51卷 209-224页
作者: Naqvi, Syed S. Browne, Will N. Hollitt, Christopher Victoria Univ Wellington Sch Engn & Comp Sci Wellington 6140 New Zealand
A number of pro-superpixel based saliency models have recently been proposed, which segment the image into small perceptually homogeneous regions before saliency computation. Such approaches ignore important object pr... 详细信息
来源: 评论
Focal Boundary Guided salient object Detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2019年 第6期28卷 2813-2824页
作者: Wang, Yupei Zhao, Xin Hu, Xuecai Li, Yin Huang, Kaiqi Chinese Acad Sci Inst Automat Ctr Res Intelligent Syst & Engn Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China Chinese Acad Sci Inst Automat Ctr Res Intelligent Percept & Comp Natl Lab Pattern Recognit Beijing 100190 Peoples R China Univ Sci & Technol China Sch Informat Sci & Technol Hefei 230026 Anhui Peoples R China Univ Wisconsin Dept Biostat & Med Informat Madison WI 53706 USA Univ Wisconsin Dept Comp Sci 1210 W Dayton St Madison WI 53706 USA Chinese Acad Sci Inst Automat Ctr Res Intelligent Syst & Engn Natl Lab Pattern Recognit Beijing 100190 Peoples R China CAS Ctr Excellence Brain Sci & Intelligence Techn Shanghai 20031 Peoples R China
The performance of salient object segmentation has been significantly advanced by using the deep convolutional networks. However, these networks often produce blob-like saliency maps without accurate object boundaries... 详细信息
来源: 评论
Efficient saliency detection based on Gaussian models
收藏 引用
IET IMAGE PROCESSING 2011年 第2期5卷 122-131页
作者: Liu, Z. Xue, Y. Yan, H. Zhang, Z. Shanghai Univ Sch Commun & Informat Engn Shanghai 200072 Peoples R China Shanghai Univ Minist Educ Key Lab Adv Display & Syst Applicat Shanghai 200072 Peoples R China
This study presents an efficient saliency model mainly aiming at content-based applications such as salient object segmentation. The input colour image is first pre-segmented into a set of regions using the mean shift... 详细信息
来源: 评论