咨询与建议

限定检索结果

文献类型

  • 262 篇 期刊文献
  • 169 篇 会议
  • 3 册 图书
  • 2 篇 学位论文
  • 2 篇 资讯

馆藏范围

  • 438 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 348 篇 工学
    • 266 篇 计算机科学与技术...
    • 102 篇 电气工程
    • 81 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 31 篇 软件工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 1 篇 测绘科学与技术
    • 1 篇 石油与天然气工程
    • 1 篇 农业工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 136 篇 理学
    • 109 篇 数学
    • 21 篇 统计学(可授理学、...
    • 15 篇 物理学
    • 10 篇 系统科学
    • 9 篇 生物学
    • 2 篇 化学
  • 24 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 6 篇 经济学
    • 4 篇 理论经济学
    • 3 篇 应用经济学
  • 5 篇 医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 2 篇 农学
    • 1 篇 作物学

主题

  • 438 篇 sample complexit...
  • 40 篇 pac learning
  • 26 篇 reinforcement le...
  • 21 篇 statistical lear...
  • 20 篇 machine learning
  • 19 篇 active learning
  • 16 篇 complexity theor...
  • 15 篇 algorithms
  • 12 篇 compressed sensi...
  • 12 篇 learning
  • 10 篇 lower bound
  • 10 篇 online learning
  • 9 篇 selective sampli...
  • 9 篇 generalization
  • 9 篇 dictionary learn...
  • 8 篇 deep learning
  • 8 篇 learning theory
  • 8 篇 stochastic optim...
  • 7 篇 sequential desig...
  • 7 篇 matrices

机构

  • 6 篇 google
  • 5 篇 mpi for intellig...
  • 4 篇 carnegie mellon ...
  • 4 篇 georgia inst tec...
  • 4 篇 toyota technol i...
  • 4 篇 mit cambridge ma...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ hong kong p...
  • 4 篇 natl univ singap...
  • 4 篇 georgia inst tec...
  • 3 篇 columbia univers...
  • 3 篇 princeton univ d...
  • 3 篇 technion israel ...
  • 3 篇 tata inst fundam...
  • 3 篇 microsoft res re...
  • 3 篇 univ illinois co...
  • 3 篇 univ florida dep...
  • 3 篇 uc berkeley
  • 3 篇 hebrew univ jeru...
  • 3 篇 harvard univ cam...

作者

  • 12 篇 hanneke steve
  • 7 篇 huang zhiyi
  • 6 篇 bernhard schölko...
  • 6 篇 kevin murphy
  • 6 篇 balcan maria-flo...
  • 5 篇 mansour yishay
  • 5 篇 long pm
  • 5 篇 sivan sabato
  • 5 篇 steve hanneke
  • 5 篇 oymak samet
  • 5 篇 zhivotovskiy nik...
  • 4 篇 roughgarden tim
  • 4 篇 roch sebastien
  • 4 篇 sabato sivan
  • 4 篇 gribonval remi
  • 4 篇 mohammadi hesame...
  • 4 篇 shamir ohad
  • 4 篇 srebro nathan
  • 4 篇 shai shalev-shwa...
  • 4 篇 jovanovic mihail...

语言

  • 428 篇 英文
  • 10 篇 其他
检索条件"主题词=Sample complexity"
438 条 记 录,以下是81-90 订阅
排序:
Near-optimal sample complexity bounds for circulant binary embedding
Near-optimal sample complexity bounds for circulant binary e...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Samet Oymak Christos Thrampoulidis Babak Hassibi Google Inc. United States of America California Institute of Technology United States of America
Binary embedding is the problem of mapping points from a high-dimensional space to a Hamming cube in lower dimension while preserving pairwise distances. An efficient way to accomplish this is to make use of fast embe... 详细信息
来源: 评论
On the sample complexity of Robust PCA  12
On the Sample Complexity of Robust PCA
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Matthew Coudron Gilad Lennan Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA 02139 School of Mathematics University of Minnesota Minneapolis MN 55455
We estimate the rate of convergence and sample complexity of a recent robust estimator for a generalized version of the inverse covariance matrix. This estimator is used in a convex algorithm for robust subspace recov... 详细信息
来源: 评论
Analysing the sample complexity of Opponent Shaping  24
Analysing the Sample Complexity of Opponent Shaping
收藏 引用
Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems
作者: Kitty Fung Qizhen Zhang Chris Lu Jia Wan Timon Willi Jakob Foerster University of Oxford Oxford United Kingdom Massachusetts Institute of Technology Massachutsetts MA USA
Learning in general-sum games often yields collectively sub-optimal results. Addressing this, opponent shaping (OS) methods actively guide the learning processes of other agents, empirically leading to improved indivi... 详细信息
来源: 评论
Consistent Online Gaussian Process Regression Without the sample complexity Bottleneck
Consistent Online Gaussian Process Regression Without the Sa...
收藏 引用
American Control Conference
作者: Alec Koppel Computational and Information Sciences Directorate U.S. Army Research Laboratory Adelphi MD 20783 USA
Gaussian process regression provides a framework for nonlinear nonparametric Bayesian inference applicable across machine learning, robotics, chemical engineering, and other settings. Unfortunately, the computational ... 详细信息
来源: 评论
The Price of Incentivizing Exploration: A Characterization via Thompson Sampling and sample complexity  21
The Price of Incentivizing Exploration: A Characterization v...
收藏 引用
Proceedings of the 22nd ACM Conference on Economics and Computation
作者: Mark Sellke Aleksandrs Slivkins Stanford University Stanford IN USA Microsoft Research New York City NY USA
We consider incentivized exploration: a version of multi-armed bandits where the choice of arms is controlled by self-interested agents, and the algorithm can only issue recommendations. The algorithm controls the flo... 详细信息
来源: 评论
On the sample complexity of Uncertain Linear and Bilinear Matrix Inequalities
On the Sample Complexity of Uncertain Linear and Bilinear Ma...
收藏 引用
IEEE Annual Conference on Decision and Control
作者: Mohammadreza Chamanbaz Fabrizio Dabbene Roberto Tempo Venkatakrishnan Venkataramanan Qing-Guo Wang Data Storage Institute Singapore IEIIT-CNR Torino Italy Department of Electrical and Computer Engineering National University of Singapore
In this paper, we consider uncertain linear and bilinear matrix inequalities which depend in a possibly nonlinear way on a vector of uncertain parameters. Motivated by recent results in statistical learning, we show t... 详细信息
来源: 评论
On the sample complexity of Subspace Learning  13
On the Sample Complexity of Subspace Learning
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Alessandro Rudi Guillermo D. Canas Lorenzo Rosasco Robotics Brain and Cognitive Science Istituto Italiano di Tecnologia Massachussetss Institute of Technology Universita' degli Studi di Genova LCSL Massachusetts Institute of Technology & Istituto Italiano di Tecnologia
A large number of algorithms in machine learning, from principal component analysis (PCA), and its non-linear (kernel) extensions, to more recent spectral embedding and support estimation methods, rely on estimating a... 详细信息
来源: 评论
On the sample complexity of Randomized Approaches to the Analysis and Design under Uncertainty
On the Sample Complexity of Randomized Approaches to the Ana...
收藏 引用
American Control Conference
作者: T. Alamo R. Tempo A. Luque Departamento de Ingenieria de Sistemas y Automatica Universidad de Sevilla Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla. Spain IEIIT-CNR Politecnico di Torino Corso Duca degli Abruzzi 24 Torino 10129 Italy
In this paper, we study the sample complexity of probabilistic methods for control of uncertain systems. In particular, we show the role of the binomial distribution for some problems involving analysis and design of ... 详细信息
来源: 评论
ON THE sample complexity OF GRAPHICAL MODEL SELECTION FROM NON-STATIONARY sampleS
ON THE SAMPLE COMPLEXITY OF GRAPHICAL MODEL SELECTION FROM N...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Nguyen Q. Tran Alexander Jung Dept. of Computer Science Aalto University Finland
We characterize the sample size required for accurate graphical model selection from non-stationary samples. The observed samples are modeled as a zero-mean Gaussian random process whose samples are uncorrelated but h... 详细信息
来源: 评论
Tight sample complexity of Large-Margin Learning  10
Tight Sample Complexity of Large-Margin Learning
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Sivan Sabato Nathan Srebro Naftali Tishby School of Computer Science & Engineering The Hebrew University Jerusalem 91904 Israel Toyota Technological Institute at Chicago Chicago IL 60637 USA
We obtain a tight distribution-specific characterization of the sample complexity of large-margin classification with L_2 regularization: We introduce the 7-adapted-dimension, which is a simple function of the spectru... 详细信息
来源: 评论