咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 12 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 56 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 49 篇 工学
    • 27 篇 控制科学与工程
    • 19 篇 电气工程
    • 18 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 机械工程
    • 3 篇 信息与通信工程
    • 2 篇 船舶与海洋工程
    • 1 篇 交通运输工程
    • 1 篇 核科学与技术
    • 1 篇 软件工程
  • 24 篇 管理学
    • 24 篇 管理科学与工程(可...
  • 6 篇 理学
    • 3 篇 化学
    • 3 篇 生物学
    • 2 篇 海洋科学
    • 1 篇 数学

主题

  • 56 篇 sampling-based a...
  • 26 篇 motion planning
  • 14 篇 path planning
  • 14 篇 optimal path pla...
  • 7 篇 rrt
  • 5 篇 rapidly-explorin...
  • 4 篇 random geometric...
  • 4 篇 text
  • 4 篇 asymptotic optim...
  • 4 篇 robotics
  • 3 篇 hledání cesty
  • 3 篇 experience-based...
  • 3 篇 prm
  • 3 篇 navigation
  • 3 篇 case-based reaso...
  • 3 篇 artificial intel...
  • 3 篇 pravděpodobnostn...
  • 3 篇 est
  • 2 篇 rapidly explorin...
  • 2 篇 feedback motion ...

机构

  • 4 篇 brno university ...
  • 2 篇 helwan univ fac ...
  • 2 篇 mit lab informat...
  • 2 篇 univ penn grasp ...
  • 2 篇 univ connecticut...
  • 1 篇 georgia inst tec...
  • 1 篇 tel aviv univ bl...
  • 1 篇 northwestern pol...
  • 1 篇 univ carlos iii ...
  • 1 篇 virginia tech de...
  • 1 篇 chinese acad sci...
  • 1 篇 tianjin univ tec...
  • 1 篇 stanford univ de...
  • 1 篇 univ shandong un...
  • 1 篇 nanjing univ sci...
  • 1 篇 univ michigan de...
  • 1 篇 northeastern uni...
  • 1 篇 nanjing univ sta...
  • 1 篇 univ toulouse cn...
  • 1 篇 jiangxi univ sci...

作者

  • 3 篇 abdelwahed musta...
  • 3 篇 solovey kiril
  • 3 篇 mohamed amr e.
  • 2 篇 wilson james p.
  • 2 篇 kumar vijay
  • 2 篇 pedrocchi nicola
  • 2 篇 gupta shalabh
  • 2 篇 jaffar mohamed k...
  • 2 篇 saleh mohamed al...
  • 2 篇 beschi manuel
  • 2 篇 otte michael
  • 2 篇 halperin dan
  • 2 篇 simeon thierry
  • 2 篇 chen yuan
  • 2 篇 cheng peng
  • 2 篇 karaman sertac
  • 2 篇 yu fujie
  • 2 篇 cortes juan
  • 2 篇 shen zongyuan
  • 2 篇 frazzoli emilio

语言

  • 56 篇 英文
检索条件"主题词=Sampling-Based Algorithms"
56 条 记 录,以下是21-30 订阅
排序:
HB-RRT:A path planning algorithm for mobile robots using Halton sequence-based rapidly-exploring random tree
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 第PartE期133卷
作者: Zhong, Huageng Cong, Ming Wang, Minghao Du, Yu Liu, Dong Dalian Univ Technol Sch Mech Engn Dalian Peoples R China Dalian Univ Technol Ningbo Inst Ningbo Zhejiang Peoples R China Dalian Jiaotong Univ Sch Mech Engn Dalian Peoples R China
Path planning remains crucial for efficient robot operation. A Halton Biased Rapidly-exploring Random Tree (HB-RRT) path planning algorithm is introduced in this study. The Halton sequence, known for its uniform distr... 详细信息
来源: 评论
Smooth-RRT*: An Improved Motion Planner for Underwater Robot  27
Smooth-RRT*: An Improved Motion Planner for Underwater Robot
收藏 引用
27th Asia-Pacific Conference on Communications (APCC) - Creating Innovative Communication Technologies for Post-Pandemic Era
作者: Wang, Kehao Li, Shuaifu Wang, Yang Xi, Jing Wuhan Univ Technol Sch Informat Engn Wuhan Peoples R China Wuhan Univ Technol Natl Engn Res Ctr Water Transport Safety Wuhan Peoples R China PLA Army Armaments Dept Mil Representat Off 1 Mil Representat Bur 1 Beijing Peoples R China
In underwater search and rescue, it is very important for underwater robot to reach the rescue position quickly. Planning path in advance is very important to save rescue time and energy consumption. Therefore, it is ... 详细信息
来源: 评论
SOF-RRT*: An improved path planning algorithm using spatial offset sampling
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2023年 第PartB期126卷
作者: Yu, Shanen Chen, Jianke Liu, Guangyu Tong, Xiaolong Sun, Yingyi Hangzhou Dianzi Univ Sch Automat Artificial Intelligence Key Lab IoT & Informat Fus Technol Zhejiang Prov Hangzhou 310018 Peoples R China
Recently, sampling-based algorithms have demonstrated advantages in complex and high-dimensional environments. The RRT* algorithm, as the best variant of RRT, provides progressive optimality. It is shown that the RRT*... 详细信息
来源: 评论
CCPF-RRT*: An improved path planning algorithm with consideration of congestion
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2023年 第1期228卷
作者: Liang, Yan-ming Zhao, Hai -yang Xian Univ Technol Sch Automat & Informat Engn Xian 710048 Peoples R China
Path planning is essential for robots to efficiently execute jobs in challenging settings. In this paper, we propose a new algorithm, called potential function-based sampling heuristic optimal path planning considerin... 详细信息
来源: 评论
Probabilistic RRT Connect with intermediate goal selection for online planning of autonomous vehicles
收藏 引用
IFAC-PapersOnLine 2023年 第3期56卷 373-378页
作者: Darshit Patel Azim Eskandarian Department of Mechanical Engineering Virginia Tech Blacksburg VA 24061 USA
Rapidly Exploring Random Trees (RRT) is one of the most widely used algorithms for motion planning in the field of robotics. To reduce the exploration time, RRT-Connect was introduced where two trees are simultaneousl... 详细信息
来源: 评论
PiP-X: Online feedback motion planning/replanning in dynamic environments using invariant funnels
收藏 引用
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH 2023年
作者: Jaffar, Mohamed Khalid M. Otte, Michael Univ Maryland Dept Aerosp Engn College Pk MD USA Univ Maryland Mot & Teaming Lab 8228 Paint Branch Dr College Pk MD 20742 USA
Computing kinodynamically feasible motion plans and repairing them on-the-fly as the environment changes is a challenging, yet relevant problem in robot navigation. We propose an online single-query sampling-based mot... 详细信息
来源: 评论
A Non-uniform sampling Approach for Fast and Efficient Path Planning
A Non-uniform Sampling Approach for Fast and Efficient Path ...
收藏 引用
OCEANS Conference
作者: Wilson, James P. Shen, Zongyuan Gupta, Shalabh Univ Connecticut Dept Elect & Comp Engn Storrs CT 06269 USA
In this paper, we develop a non-uniform sampling approach for fast and efficient path planning of autonomous vehicles. The approach uses a novel non-uniform partitioning scheme that divides the area into obstacle-free... 详细信息
来源: 评论
A sampling-based Algorithm with the Metropolis Acceptance Criterion for Robot Motion Planning
收藏 引用
SENSORS 2022年 第23期22卷 9203-9203页
作者: Liu, Yiyang Zhao, Yang Yan, Shuaihua Song, Chunhe Li, Fei Chinese Acad Sci Key Lab Networked Control Syst Shenyang 110016 Peoples R China Chinese Acad Sci Shenyang Inst Automation Shenyang 110016 Peoples R China Chinese Acad Sci Inst Robot & Intelligent Mfg Shenyang 110169 Peoples R China Kunshan Intelligent Equipment Res Inst Kunshan 215300 Peoples R China Shenyang Ligong Univ Sch Automat & Elect Engn Shenyang 110159 Peoples R China Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing 100049 Peoples R China Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Peoples R China
Motion planning is one of the important research topics of robotics. As an improvement of Rapidly exploring Random Tree (RRT), the RRT* motion planning algorithm is widely used because of its asymptotic optimality. Ho... 详细信息
来源: 评论
Solving the motion planning problem using learning experience through case-based reasoning and machine learning algorithms
收藏 引用
AIN SHAMS ENGINEERING JOURNAL 2020年 第1期11卷 133-142页
作者: Abdelwahed, Mustafa F. Mohamed, Amr E. Saleh, Mohamed Aly Helwan Univ Fac Engn Dept Elect Commun & Comp 1 Sherif St Cairo 11792 Egypt
This article presents two novel methodologies for solving the motion planning problem through retained experience. Both approaches employ AI's case-based reasoning (CBR) technique. Case-based reasoning is an exper... 详细信息
来源: 评论
PQ-RRT*: An improved path planning algorithm for mobile robots
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2020年 152卷 113425-113425页
作者: Li, Yanjie Wei, Wu Gao, Yong Wang, Dongliang Fan, Zhun South China Univ Technol Sch Automat Sci & Engn Guangzhou 510641 Guangdong Peoples R China Shantou Univ Dept Elect & Informat Engn Shantou 515063 Peoples R China Shantou Univ Key Lab Digital Signal & Image Proc Guangdong Pro Shantou 515063 Peoples R China Shantou Univ Key Lab Intelligent Mfg Technol Minist Educ Shantou 515063 Guangdong Peoples R China Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 43003 Peoples R China
During the last decade, sampling-based algorithms for path planning have gained considerable attention. The RRT*, a variant of RRT (rapidly-exploring random trees), is of particular concern to researchers due to its a... 详细信息
来源: 评论