咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 12 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 56 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 49 篇 工学
    • 27 篇 控制科学与工程
    • 19 篇 电气工程
    • 18 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 机械工程
    • 3 篇 信息与通信工程
    • 2 篇 船舶与海洋工程
    • 1 篇 交通运输工程
    • 1 篇 核科学与技术
    • 1 篇 软件工程
  • 24 篇 管理学
    • 24 篇 管理科学与工程(可...
  • 6 篇 理学
    • 3 篇 化学
    • 3 篇 生物学
    • 2 篇 海洋科学
    • 1 篇 数学

主题

  • 56 篇 sampling-based a...
  • 26 篇 motion planning
  • 14 篇 path planning
  • 14 篇 optimal path pla...
  • 6 篇 rrt
  • 5 篇 rapidly-explorin...
  • 4 篇 random geometric...
  • 4 篇 text
  • 4 篇 asymptotic optim...
  • 4 篇 robotics
  • 3 篇 hledání cesty
  • 3 篇 experience-based...
  • 3 篇 prm
  • 3 篇 navigation
  • 3 篇 case-based reaso...
  • 3 篇 artificial intel...
  • 3 篇 pravděpodobnostn...
  • 3 篇 est
  • 2 篇 rapidly explorin...
  • 2 篇 feedback motion ...

机构

  • 4 篇 brno university ...
  • 2 篇 helwan univ fac ...
  • 2 篇 mit lab informat...
  • 2 篇 univ penn grasp ...
  • 2 篇 univ connecticut...
  • 1 篇 georgia inst tec...
  • 1 篇 tel aviv univ bl...
  • 1 篇 northwestern pol...
  • 1 篇 univ carlos iii ...
  • 1 篇 virginia tech de...
  • 1 篇 chinese acad sci...
  • 1 篇 tianjin univ tec...
  • 1 篇 stanford univ de...
  • 1 篇 univ shandong un...
  • 1 篇 nanjing univ sci...
  • 1 篇 univ michigan de...
  • 1 篇 northeastern uni...
  • 1 篇 nanjing univ sta...
  • 1 篇 univ toulouse cn...
  • 1 篇 jiangxi univ sci...

作者

  • 3 篇 abdelwahed musta...
  • 3 篇 solovey kiril
  • 3 篇 mohamed amr e.
  • 2 篇 wilson james p.
  • 2 篇 kumar vijay
  • 2 篇 pedrocchi nicola
  • 2 篇 gupta shalabh
  • 2 篇 jaffar mohamed k...
  • 2 篇 saleh mohamed al...
  • 2 篇 beschi manuel
  • 2 篇 otte michael
  • 2 篇 halperin dan
  • 2 篇 simeon thierry
  • 2 篇 chen yuan
  • 2 篇 cheng peng
  • 2 篇 karaman sertac
  • 2 篇 yu fujie
  • 2 篇 cortes juan
  • 2 篇 shen zongyuan
  • 2 篇 frazzoli emilio

语言

  • 56 篇 英文
检索条件"主题词=Sampling-based algorithms"
56 条 记 录,以下是1-10 订阅
排序:
sampling-based algorithms for optimal motion planning
收藏 引用
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH 2011年 第7期30卷 846-894页
作者: Karaman, Sertac Frazzoli, Emilio MIT Lab Informat & Decis Syst Cambridge MA 02139 USA
During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarante... 详细信息
来源: 评论
sampling-based algorithms for optimal motion planning
Sampling-based algorithms for optimal motion planning
收藏 引用
5th Robotics - Science and Systems (RSS) Conference
作者: Karaman, Sertac Frazzoli, Emilio MIT Lab Informat & Decis Syst Cambridge MA 02139 USA
During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarante... 详细信息
来源: 评论
Speeding up single-query sampling-based algorithms using case-based reasoning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2018年 114卷 524-531页
作者: Abdelwahed, Mustafa F. Saleh, Mohamed Mohamed, Amr E. Helwan Univ Fac Engn Dept Elect Commun & Comp 1 Sherif St Cairo 11792 Egypt
We present an extension to the single-query sampling-based algorithm for improving its response time using Case-based Reasoning (CBR) technique. Unlike traditional experience-based planners, CBR depends on a single th... 详细信息
来源: 评论
MINIMUM DOSE PATH PLANNING IN COMPLEX RADIOACTIVE ENVIRONMENTS WITH sampling-based algorithms  25
收藏 引用
25th International Conference on Nuclear Engineering
作者: Chao, Nan Liu, Yong-kuo Xia, Hong Bai, Lu Harbin Engn Univ Fundamental Sci Nucl Safety & Simulat Technol Lab Harbin Heilongjiang Peoples R China
The objective of this paper is to provide a minimum dose path navigation method for occupational workers to avoid additional radiation exposure and quantitatively analyze the cost of paths in radioactive environments.... 详细信息
来源: 评论
Information-Theoretic Stochastic Optimal Control via Incremental sampling-based algorithms
Information-Theoretic Stochastic Optimal Control via Increme...
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)
作者: Arslan, Oktay Theodorou, Evangelos A. Tsiotras, Panagiotis Georgia Inst Technol Daniel Guggenheim Sch Aerosp Engn Atlanta GA 30332 USA Georgia Inst Technol Inst Robot & Intelligent Machines Atlanta GA 30332 USA
This paper considers optimal control of dynamical systems which are represented by nonlinear stochastic differential equations. It is well-known that the optimal control policy for this problem can be obtained as a fu... 详细信息
来源: 评论
FHQ-RRT*: An Improved Path Planning Algorithm for Mobile Robots to Acquire High-Quality Paths Faster
收藏 引用
SENSORS 2025年 第7期25卷 2189-2189页
作者: Dong, Xingxiang Wang, Yujun Fang, Can Ran, Kemeng Liu, Guohui Southwest Univ Coll Comp & Informat Sci Chongqing 400715 Peoples R China
The Rapidly-exploring Random Tree Star (RRT*) algorithm, widely utilized for path planning, faces challenges, such as slow acquisition of feasible paths and high path costs. To address this issue, this paper presents ... 详细信息
来源: 评论
An Overview and Comparison of Traditional Motion Planning based on Rapidly Exploring Random Trees
收藏 引用
SENSORS 2025年 第7期25卷 2067-2067页
作者: Chu, Yang Chen, Quanlin Yan, Xuefeng Nanjing Univ Aeronaut & Astronaut Sch Comp Sci & Technol Nanjing 211106 Peoples R China Nanjing Univ State Key Lab Novel Software Technol Nanjing 210023 Peoples R China
Motion planning is a fundamental problem in robotics that involves determining feasible or optimal paths within finite time. While complete motion planning algorithms are guaranteed to converge to a path solution in f... 详细信息
来源: 评论
Motion planning for robotics:A review for sampling-based planners
收藏 引用
Biomimetic Intelligence & Robotics 2025年 第1期5卷 15-34页
作者: Liding Zhang Kuanqi Cai Zewei Sun Zhenshan Bing Chaoqun Wang Luis Figueredo Sami Haddadin Alois Knoll School of Computation Information and Technology(CIT)Technical University of MunichMunich 85748Germany Munich Institute of Robotics and Machine Intelligence(MIRMI) Technical University of MunichMunich 80992Germany School of Control Science and Engineering Shandong UniversityJinan 250061China School of Computer Science University of NottinghamNottingham 315199United Kingdom
Recent advancements in robotics have transformed industries such as manufacturing,logistics,surgery,and planetary exploration.A key challenge is developing efficient motion planning algorithms that allow robots to nav... 详细信息
来源: 评论
CDRT-RRT*: Real-time rapidly exploring Random Tree Star based on convex dissection
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 268卷
作者: Liu, Jinyuan Fu, Minglei Zhang, Wenan Chen, Bo Sychou, Uladzislau Belotserkovsky, Alexei Zhejiang Univ Technol Coll Informat Engn Hangzhou 310023 Peoples R China Natl Acad Sci Belarus United Inst Informat Problems Minsk 220012 BELARUS
This study presents CDRT-RRT*, an algorithm for rapid real-time path planning in N-dimensional Euclidean spaces, based on convex dissection. CDRT-RRT* introduces a convex dissection dynamic neighborhood graph that dif... 详细信息
来源: 评论
A novel RRT*-Connect algorithm for path planning on robotic arm collision avoidance
收藏 引用
SCIENTIFIC REPORTS 2025年 第1期15卷 1-19页
作者: Cao, Miaolong Mao, Huawei Tang, Xiaohui Sun, Yuzhou Chen, Tiandong Zhejiang Univ Sci & Technol Sch Mech & Energy Engn Hangzhou 310023 Peoples R China Zhejiang Ansheng Sci & Technol Stock Co Ltd Jinhua 321300 Peoples R China
To address the limitations of the original algorithm, several optimization techniques are proposed. This article presents an original RRT*-Connect algorithm for the planning of obstacle avoidance paths on robotic arms... 详细信息
来源: 评论