Subsurface geological formations provide giant capacities for large-scale (TWh) storage of renewable energy, once this energy (e.g. from solar and wind power plants) is converted to green gases, e.g. hydrogen. The cri...
详细信息
Subsurface geological formations provide giant capacities for large-scale (TWh) storage of renewable energy, once this energy (e.g. from solar and wind power plants) is converted to green gases, e.g. hydrogen. The critical aspects of developing this technology to full-scale will involve estimation of storage capacity, safety, and efficiency of a subsurface formation. Geological formations are often highly heterogeneous and, when utilized for cyclic energy storage, entail complex nonlinear rock deformation physics. In this work, we present a novel computational framework to study rock deformation under cyclic loading, in presence of nonlinear time-dependent creep physics. Both classical and relaxation creep methodologies are employed to analyze the variation of the total strain in the specimen over time. Implicit time-integration scheme is employed to preserve numerical stability, due to the nonlinear process. Once the computational framework is consistently defined using finite element method on the fine scale, a multiscale strategy is developed to represent the nonlinear deformation not only at fine but also coarser scales. This is achieved by developing locally computed finite element basis functions at coarse scale. The developed multiscale method also allows for iterative error reduction to any desired level, after being paired with a fine-scale smoother. Numerical test cases are studied to investigate various aspects of the developed computational workflow, from benchmarking with experiments to analysing the impact of nonlinear deformation for a field-scale relevant environment. Results indicate the applicability of the developed multiscale method in order to employ nonlinearphysics in their laboratory-based scale of relevance (i.e., fine scale), yet perform field-relevant simulations. The developed simulator is made publicly available at https://***/ADMIRE_Public/mechanics. (C) 2021 The Author(s). Published by Elsevier Inc.
We present an algebraic dynamic multilevel method for multiphase flow in heterogeneous fractured porous media (F-ADM), where fractures are resolved at fine scale with an embedded discrete modelling approach. This fine...
详细信息
We present an algebraic dynamic multilevel method for multiphase flow in heterogeneous fractured porous media (F-ADM), where fractures are resolved at fine scale with an embedded discrete modelling approach. This fine-scale discrete system employs independent fine-scale computational grids for heterogeneous matrix and discrete fractures, which results in linear system sizes out of the scope of the classical simulation approaches. To reduce the computational costs, yet provide accurate solutions, on this highly resolved fine-scale mesh, F-ADM imposes independent dynamic multilevel coarse grids for both matrix and lower-dimensional discrete fractures. The fully-implicit discrete system is then mapped into this adaptive dynamic multilevel resolution for all unknowns (i.e., pressure and phase saturation). The dynamic resolution aims for resolving sharp fronts for the transport unknowns, thus constant interpolators are used to map the saturation from coarse to fine grids both in matrix and fractures. However, due to the global nature of the pressure unknowns, local multilevel basis functions for both matrix and fractures with flexible matrix-fracture coupling treatment are introduced for the pressure. The assembly of the full sets of basis functions allows for mapping the solutions up and down between any resolutions. Due to its adaptive multilevel resolution, F-ADM develops an automatic integrated framework to homogenise or explicitly represent a fracture network at a coarser level by selection of the multilevel coarse nodes in each sub-domain. Various test cases, including multiphase flow in 2D and 3D media, are studied, where only a fraction of the fine-scale grids is employed to obtain accurate nonlinear multiphase solutions. FADM casts a promising approach for large-scale simulation of multiphase flow in fractured media. (C) 2018 Elsevier Inc. All rights reserved.
暂无评论